
A New Virtual Indexing Method for Measuring Host

Connection Degrees

Pinghui Wang
1
, Xiaohong Guan

1,2
, Weibo Gong

3
, and Don Towsley

4

1
SKLMS Lab and MOE KLINNS Lab, Xi’an Jiaotong University, Xi’an, China

2
Department of Automation and NLIST Lab, Tsinghua University, Beijing, China

3
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA

4
Department of Computer Science, University of Massachusetts, Amherst, MA

Emails: {phwang, xhguan}@sei.xjtu.edu.cn, gong@ecs.umass.edu, towsley@cs.umass.edu

Abstract—We present a new virtual indexing method for

estimating host connection degrees for high speed links. It is

based on the virtual connection degree sketch where a compact

sketch of network traffic is built by generating the associated

virtual bitmaps for each host. Each virtual bitmap consists of a

fixed number of bits selected randomly from a shared bit array

by a new method for recording the traffic flows of the

corresponding host. The shared bit array is efficiently utilized by

all hosts since its every bit is shared by the virtual bitmaps of

multiple hosts. To reduce the “noise” contaminated in a host’s

virtual bitmaps due to sharing, we propose a new method to

generate the “filtered” bitmap used to estimate host connection

degree. Furthermore, it can be easily implemented in parallel

and distributed processing environments. The experimental and

testing results based on the actual network traffic show that the

new method is accurate and efficient.

Keywords-Bitmap; Data streaming; Host connection degree;

Virtual Indexing.

I. INTRODUCTION

The in-degree/out-degree, defined as the number of distinct

sources/destinations that a network host connects to during a

given time window, is an important statistic metric of network

traffic that provides with insights into network measurement

and monitoring applications such as host profiling [1], and aids

fast detection of security attacks [2], [3], etc. To obtain the

total number of flows generated by a host, one needs to build a

hash table that keeps track of existing flows to avoid

duplicating flow records for packets from the same flow. In

this paper, a flow is defined as the set of all packets with the

same source and destination addresses in a time window.

However, it is not practical to obtain host connection degrees

by building per-host hash tables that are resource intensive to

maintain for high speed links carrying a huge number of

simultaneous active hosts and flows. It may not be possible to

accurately measure and monitor massive network traffic

simply by upgrading the performance of measuring devices.

Hence, it is desirable to develop new methods to meet the

challenges of monitoring high speed network traffic online.

Estan and Varghese [4] proposed a family of bitmap

algorithms for estimating the total number of distinct flows on

high speed links. To estimate each host’s connection degree, it

need to build a bitmap for each host, which may not be

scalable to high speed links carrying flows associated a huge

number of hosts. Zhao et al. [5] proposed a data stream method

to measure host connection degrees, which is a variant of

Bloom filter [6] and consists of n×m 2-dimentional bit array.

Each host is associated with H columns in the bit array

randomly selected by H hash functions, and one bit in each of

its associated columns is set as one for each of its packets

coming. The corresponding H columns of each host can be

used to estimate its connection degree, since each column can

be viewed as a direct bitmap as proposed in [7]. The direct

bitmap method indicates that the number of rows represented

in the bit array should be set in the order of thousands to

perform the task of estimating connection degrees of sources

with thousands of flows. However, most hosts have only

several flows and only a very small number of hosts have

thousands of flows, which implies that most columns in the bit

array are assigned to hosts with a small connection degree, and

are mostly zeros. To reduce this space inefficiency, Yoon et al.

[8] build a virtual bitmap for each host by taking bits randomly

from a shared bit array using a group of hash functions. Each

host’s virtual bitmap is used to estimate its connection degree

similar to what is proposed in [7] using a direct bitmap. The

number of distinct bits in a host’s virtual bitmap varies due to

hash collisions. There is no guarantee on the quality of the

estimate of the out-degree of a host whose virtual bitmap is

generated with many hash collisions. Furthermore, each bit in

the shared bit array may be shared by several hosts and the

“noise” contaminated in a host’s virtual bitmap exists while

estimating its connection degree. In particular, a host with a

small number of connections is sensitive to the “noise”, since it

has more bits in its virtual bitmap that are probably

contaminated by other sources.

In this paper, we present a new virtual indexing method to

accurately estimate host connection degrees over high speed

links. A virtual connection degree sketch data structure is

designed to build a very compact sketch of network traffic,

which can be used to estimate the connection degree of each

host based on the associated virtual bitmaps. Each virtual

bitmap consists of a fixed number of bits selected randomly

from a shared bit array by a new virtual bitmap generation

method. The shared bit array is small, and is efficiently

utilized by all hosts since its every bit is shared by the virtual

bitmaps of multiple hosts. The new method is computationally

efficient since it only needs to set several bits for each

incoming packet. To reduce the “noise” contaminated in each

The research presented in this paper is supported in part by National Natural

Science Foundation (60574087), 863 High Tech Development Plan

(2007AA01Z475, 2007AA01Z480, 2007AA01Z464, 2008AA01Z415)

host’s virtual bitmaps because of sharing, we present a new

method for generating the “filtered” bitmap used to estimate

the host connection degree. Furthermore, it can be easily

implemented in parallel and distributed processing

environments. Experiments based on the actual network

traffic show that the new method is truly accurate and

efficient. It should be noted that the algorithm for measuring

host out-degrees can also be applied for host in-degrees.

This paper is organized as follows. In Section II the new

virtual indexing method is described in details. The

performance evaluation is presented in Section III. Concluding

remarks then follow.

II. VIRTUAL CONNECTION DEGREE SKETCH

A. Data Structure

A virtual connection degree sketch (VCDS) consists of a bit

array A[k] (0 1k m≤ ≤ −) associated with H independent

groups of hash functions {f1,0, f1,1, …, f1,L-1}, {f2,0, f2,1, …,

f2,L-1}, …, and {fH,0, fH,1, …, fH,L-1}. Each fi,j (1 i H≤ ≤ ,

0 1j L≤ ≤ −) is a hash function: {0, 1, …, N-1} → {0, 1, …,

m-1}, where N is the size of source space S.

Each source s has H corresponding virtual bitmaps Bi(s)

(1 i H≤ ≤) where Bi(s) is defined as a bit array consisting of

L bits selected randomly from A by the group of hash

functions {fi,0, fi,1,…, fi,L-1}, that is

Bi(s) = (A[fi,0(s)], A[fi,1(s)], …, A[fi,L-1(s)]), 1 i H≤ ≤ .

Bi(s) can be viewed as a direct bitmap [7] occupied only by

s. The length of the bit array in a direct bitmap is constant and

is a vital parameter to estimate the out-degree of s. However

the number of distinct bits in Bi(s) is smaller than L, when

A[fi,0(s)], A[fi,1(s)], …, A[fi,L-1(s)] are selected from A with hash

collisions. There is no guarantee on the quality of the estimate

of the out-degree of a host whose virtual bitmap is generated

with many collisions. For example, when m=10
6
 and L=10

4
,

the number of distinct bits selected from A by the group of

hash functions {fi,0, fi,1,…, fi,L-1} is smaller than L with a

probability of 1-10
-22

 and its expectation is 9950. This

problem also exists but is not noticed in [8]. To address this

issue, we propose a virtual bitmap generating method by

designing
,i j

f (1 i H≤ ≤ , 0 1j L≤ ≤ −) based on the double

hashing scheme [9]

, ,1 ,2
() () () mod

i j i i
f s s j s mψ ψ= +

where
,1i

ψ is a hash function that maps the source space

uniformly to the range {0, 1, …, m-1},
,2i

ψ is a hash function

that maps the source space uniformly to the range {1, 2, …,

m-1}, and m is a prime. It is easily validated that each
,i j

f also

maps the source space uniformly to the range {0, 1, …, m-1}.

The following theorem shows that each virtual bitmap is

hashed into L different bits in A.

Theorem 1. For a source s, L different bits are selected from

A by each group of hash functions {fi,0, fi,1,…, fi,L-1}

(1 i H≤ ≤), that is,

1 2, ,() ()i j i jf s f s≠ ,
1 2

0 1j j L≤ < ≤ − .

Proof. (Proof by contradiction) Assume to the contrary that

there is
1 2, ,() ()i j i jf s f s= , for

1 2
j j≠ then

2 1 ,2
() () 0mod

i
j j s mψ− ≡ .

Since
2 1

1 1j j L m≤ − ≤ − � and m is prime, we have

2 1
0modj j m− ≠ and

,2
() 0mod

i
s mψ ≡ . Note

,2
() 1

i
s mψ ≤ − ,

so we have
,2

() 0
i

sψ = . This contradicts with the definition of

,2
() {1,2,..., 1}

i
s mψ ∈ − . □

Theorem 2. For each Bi(s) (1 i H≤ ≤ and s ∈ S), denote set

SBi(s)={fi,j(s)| 0 1j L≤ ≤ − }. Then the probability that any bit

A[k] (0 1k m≤ ≤ −) is included in Bi(s) is

 { }()
i

L
P k SB s

m
∈ = . (1)

Proof. If ()
i

k SB s∈ and k is the the j-th (0 1j L≤ ≤ −) bit in

Bi(s)=(A[fi,0(s)], A[fi,1(s)], …, A[fi,L-1(s)]), we have

k=
,1
()

i
sψ +

,2
()

i
j sψ mod m.

For each
,2

()
i

sψ in {1, 2, …, m-1} and each j in {0, 1, …,

L-1}, there is one and only one virtual bitmap contained A[k],

since
,1
()

i
sψ is determined as follows:

,1 ,2
() () mod

i i
s k j s mψ ψ= − .

Therefore the total number of distinct virtual bitmaps

contained A[k] is L(m-1). Since each virtual bitmap Bi(s) is

selected uniformly from the total m(m-1) distinct virtual

bitmaps, we have (1). □

B. Update Procedure

Each bit in A is initially set to zero. When a packet p = (s, d)

arrives, we set the g(s||d)-th bit in each virtual bitmap Bi(s) to

one. Here g is a uniform hash function with the range {0, …,

L-1}, and the flow label s||d is the concatenation of source s

and destination d. As the g(s||d)-th position in Bi(s),

corresponds to the fi,g(s||d) (s)-th position in A, we only need to

set H bits for each incoming packet as follows:

A[fi,g(s||d) (s)] = 1, 1 i H≤ ≤ .

C. Connection Degree Estimator

The bits in Bi(s) (1 i H≤ ≤) that the flows of source s hash

into using hash functions {fi,0, fi,1,…, fi,L-1} are denoted as the

bits used by s in the following part. They are set to one to

store the flow information of s, so each Bi(s) can be used to

estimate the out-degree of s similar to the direct bitmap

proposed in [7]. Since each bit in Bi(s) is selected randomly

from A and also shared by other sources, the other bits in Bi(s)

not used by s might also be set to one by flows belonging to

other sources. This introduces “noise” into the estimation of

the out-degree of s. Therefore the more bits in Bi(s) are not

used by s, the more “noise” is generated. The size of the

virtual bitmap, L, is usually set to thousands to guarantee the

high accuracy of estimating the out-degree of a source

associated with a huge number of flows, which will generate a

large number of bits containing “noise” especially for the

source associated with a small number of flows. In what

follows, we introduce a new “filtered” bitmap generation

method to reduce the “noise” generated by other sources. The

“filtered” bitmap Bs defined as a bit vector is computed from

B1(s), B2(s), …, and BH(s) as follows:

1 2
() () ()

s H
B B s B s B s= ⊗ ⊗ ⊗�

where ⊗ is the bit-AND operation. For any flow (s, d) of s,

the g(s||d)-th bit in each Bi(s) (1 i H≤ ≤) is set to one, so the

g(s||d)-th bit in Bs is still one. Define ()jϕ as follows:

1
() 1

jOD
m L L

j
m m L

ϕ
−  

= + − 
 

 (2)

where ODj is the out-degree of source j. Then for any given

bit in each Bi(s) not used by s, the probability that it is set to

zero by any other source j is ()H jϕ based on Theorem 2.

Therefore it is a noise bit when all corresponding bits in Bi(s)

(1 i H≤ ≤) are ones with probability

()

1
1

()

H
H

sq
sϕ

 Φ
= − 
 

where ()
j

jϕΦ = ∏ . Suppose m and L are given, we want to

optimize H to minimize the “noise” contaminated in the

“filtered” bitmap Bs. There are two competing forces: for each

bit in Bs not used by s, using larger H gives us a greater

chance of finding a zero bit in its H corresponding bits in Bi(s);

but using more bitmaps results in more bits in A being set to

one, which increases the probability that a host’s virtual

bitmap is contaminated with “noise”. When m>>L, we have

()()

1 () 1
H

s H
q Hτ≈ = − Φ . The impact of H on the “noise” is

described in the following lemma.

Lemma 1. ()() 1
H

H
Hτ = − Φ decreases with

1
0,

ln
H

 
∈ − 

Φ 
,

increases with
1

,
ln

H
 

∈ − +∞ 
Φ 

, and obtains the minimum

at
1

ln
H = −

Φ
.

Proof. Define ln ()y Hτ= , then its first derivative and

second derivative are

() ln
ln 1

1

H

H

H

dy H

dH

Φ Φ
= − Φ −

− Φ

()

()

2

2 2

2 2 ln ln

1

H H

H

Hd y

dH

Φ − Φ − Φ Φ
=

− Φ
.

It can be easily shown that 0
dy

dH
< when

1
0,

ln
H

 
∈ − 

Φ 

and 0
dy

dH
> when

1
,

ln
H

 
∈ − +∞ 

Φ 
, therefore function

()Hτ decreases with
1

0,
ln

H
 

∈ − 
Φ 

 and increases with

1
,

ln
H

 
∈ − +∞ 

Φ 
. Meanwhile we have

1

ln

0
H

dy

dH =−
Φ

= and

2

2
1

ln

0

H

d y

dH
=−

Φ

> , so the optimal value of ()Hτ is obtained at

1

ln
H = −

Φ
. □

In what follows a new method is proposed to estimate the

out-degree of source s. For any given bit in Bs not used by s,

the probability that no other source uses it either is
()

1
1 s

s
p q= − . Denote the total number of bits in Bs not used by

s as Us, the expectation of
sBU defined as the total number of

zero bits in Bs is

 () () ()
sB s s s s

E U E U p p E U= = . (3)

The probability that a given bit in Bs is not used by s is

1
1

sOD

L

 
− 

 
, so the expectation of Us is computed as follows:

 ()
1

1
s s

OD OD

L
s

E U L Le
L

− 
= − ≈ 

 
. (4)

ps is computed with inputs of each hosts’ out-degrees which

are unknown. We find that ps can be estimated from A.

Denote ()
i

AB s as the bits in A[k] (0 1k m≤ ≤ −) except

A[fi,0(s)], A[fi,1(s)], …, A[fi,L-1(s)]. For each bit in ()
i

AB s , the

probability of being set to zero is
()

H

s
s

α
ϕ

Φ
= . Let

'

()iB sU be the

total number of zero bits in ()
i

AB s . Then

()'

()
()

iB s s
E U m L α= − . (5)

Since ()()

1
1 1 1

Hs

s s
p q α= − = − − , we have the following

equation from (5):

()'

()
1 1

i

H

B s

s

E U
p

m L

 
 = − −
 −
 

. (6)

From (3), (4) and (6), we have

() ()'

()
ln ln 1 1

s i

H

B B s

s

E U E U
OD L L

L m L

  
  ≈ − + − −
  −   

. (7)

Replacing ()
sB

E U and ()'

()iB s
E U in (7) by the

instantaneous values,
sBU and

'

()iB sU obtained from Bs and

()
i

AB s respectively, we have the following estimate of

()i

s
OD (1 i H≤ ≤):

'

()()
ln ln 1 1s i

H

B B si

s

U U
OD L L

L m L

  
 = − + − − 

  −  

. (8)

The first term of the right hand side of (8) corresponds to

the estimator used in the direct bitmap [7]. The second term of

the right hand side of (8) is used to compensate for the error

caused by the “noise” generated by the other sources.

Finally the following equation gives a more accurate

estimator of the out-degree of s:
()

1

est i

s s
i H

OD medianOD
≤ ≤

= .

D. Combination Operation

A VCDS A can be distributed across G routers as follows.

Each router i (1 i G≤ ≤) can maintain a VCDS Ai, based on

the traffic that it observes. Based on all network traffic at all

G routers, VCDS A can be calculated by the following

equation

1 2 G
A A A A= ⊕ ⊕ ⊕�

where ⊕ is the bit-OR operation. Each distributed node i

(1 i G≤ ≤) only needs to send Ai to the control center, which

greatly reduces the amount of communications between the

distributed nodes and the control center.

E. Parameter Configuration

Since the total complexity for updating each packet is O(H),

H should be small. If the out-degree of source s is much larger

than LlnL + O(L), we will obtain all 1’s in its corresponding

virtual bitmaps with high probability due to the result of the

“coupon collector’s problem” [10]. In this case, the out-

degree of s cannot be estimated accurately, and we only know

that it is not smaller than LlnL. To address this issue, we can

directly use a larger L or apply the pre-sampling method

proposed in [8].

III. TESTING AND PERFORMANCE EVALUATION.

A. Data Collection

Experimental data used in this paper is based on the

network traffic of the backbones of CERNET (China

Education and Research Network) Northwest Regional Center

and the campus network of Xi’an Jiaotong University with

more than 300000 hosts. The actual traffic data was collected

at an egress router with a bandwidth of 1.5Gbps from a B-

class network by using TCPDUMP. The total number of

collected packets is about 1.2×10
8
. There are 1.4×10

5
 distinct

sources and 4.7×10
5
 distinct flows. We further compare

VCDS with the state-of-the-art method compact spread

estimator (CSE) [8].

B. Host Out-Degree Estimation

The following experiments are used to evaluate the

performance of estimating host out-degrees provided by

VCDS. The relative error of estimated out-degree of host s is

defined as | | /est

s s s
OD OD OD− , where est

s
OD is its estimated

out-degree and ODs is its actual out-degree. Fig. 1 and 2 show

the relative errors of host out-degree estimates for different H,

where m=4 M and L=2048. The accuracy of VCDS first

increases with H and then decreases with H, which is

consistent with Lemma 1.

The impact of L is shown in Fig. 3, where H=5 and m=4 M.

For a host with a small out-degree, the error of its estimated

out-degree increases with L, since a larger value of L

introduce more unused bits in the host’s virtual bitmaps,

which might be contaminated. However, a smaller value of L

generates a larger estimation error when the out-degree is

large similar to the direct bitmap algorithm [7].

50 100 150 2001

50

100

150

200

1

actual out-degree

e
s

tim
a

te
d

 o
u

t-
d

e
g

re
e

50 100 150 2001

50

100

150

200

1

actual out-degree

e
s

tim
a
te

d
 in

-d
e
g

re
e

(a). H = 1 (b). H = 3

50 100 150 2001

50

100

150

200

1

actual out-degree
e
s

tim
a
te

d
 in

-d
e
g

re
e

50 100 150 2001

50

100

150

200

1

actual out-degree

e
s

tim
a

te
d

 o
u

t-
d

e
g

re
e

(c). H = 5 (d). H = 15

Figure 1. Actual vs estimated out-degree for different H

5 10 15 201
0

5

10

15

out-degree

a
v
e
ra

g
e
 r

e
la

tiv
e
 e

rr
o
r

CSE

VCDS H=1

VCDS H=3

VCDS H=5

(a). Average relative error for small out-degrees

1000 1050 1100 1150 1200
0

0.01

0.02

0.03

0.04

0.05

0.06

out-degree

a
v
e
ra

g
e
 r

e
la

tiv
e
 e

rr
o
r

CSE

VCDS H=1

VCDS H=3

VCDS H=5

(b). Average relative error for large out-degrees

Figure 2. Average relative error for different H

5 10 15 201
0

1

2

3

out-degree

a
v
e
ra

g
e
 r

e
la

tiv
e
 e

rr
o
r L=256

L=512

L=1024

1000 1100 1200 1300
0

0.2

0.4

0.6

0.8

1

out-degree

a
v
e
ra

g
e
 r

e
la

tiv
e
 e

rr
o
r

L=256

L=512

L=1024

(a). Average relative error for hosts with small out-degrees (b). Average relative error for hosts with large out-degrees

Figure 3. Average relative error for different L

5 10 15 201
0

10

20

30

40

out-degree

a
v
e
ra

g
e
 r

e
la

tiv
e
 e

rr
o
r

m=1 M

m=2 M

m=4 M

m=8 M

1,000 1,100 1,200 1,300
0

0.02

0.04

0.06

0.08

0.1

0.12

out-degree

a
v
e
ra

g
e
 r

e
la

tiv
e
 e

rr
o
r

m=1 M

m=2 M

m=4 M

m=8 M

(a). Average relative error for hosts with small out-degrees (b). Average relative error for hosts with large out-degrees

Figure 4. Average relative error for different m

Fig. 4 shows the average relative errors of host out-degree

estimates for different m, where H=5 and L=2048. We

observe that the accuracy of estimated out-degrees is

improved by increasing m, which reduces the “noise”,

especially for hosts with small out-degrees. For a host with a

small out-degree, the number of unused bits in its virtual

bitmap is larger than that of a host with a large out-degree.

Therefore the estimated out-degree of a host with a small out-

degree is more sensitive to the “noise”.

IV. CONCLUSIONS

In this paper we present a data streaming method VCDS for

estimating host connection degrees over high speed links.

VCDS can generate a very compact sketch of network traffic,

and the connection degree of each host is estimated by the

associated virtual bitmaps consisting of a fixed number of bits

randomly selected from a shared bit array. The experimental

and test results based on the actual network traffic show that

the new method is accurate and computationally efficient.

REFERENCES

[1] K. Xu, Z. L. Zhang, and S. Bhattacharyya, “Profiling Internet backbone

traffic: behavior models and applications,” in Proceedings of ACM

SIGCOMM 2005, Philadelphia, PA, 2005, pp. 169–180.

[2] M. Roesch, “Snort–lightweight intrusion detection for networks,” in

Proceedings of the USENIX LISA Conference on System Administration

1999, Seattle, WA, 1999, pp. 229–238.

[3] D. Plonka, “Flowscan: A network traffic flow reporting and

visualization tool,” in Proceedings of USENIX LISA 2000, New Orleans,

LA, 2000, pp. 305–317.

[4] C. Estan and G. Varghese, “Bitmap algorithms for counting active flows

on high speed links,” in Proceedings of ACM SIGCOMM IMC 2003,

Miami, FL, 2003, pp. 182–209.

[5] Q. Zhao, A. Kumar, and J. Xu, “Joint data streaming and sampling

techniques for detection of super sources and destinations,” in

Proceedings of ACM SIGCOMM IMC 2005, Berkeley, CA, 2005,

pp.77–90.

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, July

1970.

[7] K. Y. Whang, B. T. Vander-zanden, and H. M. Taylor, “A linear-time

probabilistic counting algorithm for database applications,” IEEE

Transaction of Database Systems, vol. 15, no. 2, pp. 208–229, June

1990.

[8] M. Yoon, T. Li, S. G. Chen, J. Peir, “Fit a spread estimator in small

memory,” in Proceedings of IEEE INFOCOM 2009, Rio de Janeiro,

Brazil, 2009, pp. 504–512. Journal version is to be appeared in IEEE

Transaction on Newtworking.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction

to algorithms (2nd ed.),” MIT Press, Cambridge, MA, 2001.

[10] R. Motwani and P. Raghavan, “Randomized Algorithms,” Cambridge

University Press, 1995.

