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Abstract—We present a new virtual indexing method for 

estimating host connection degrees for high speed links. It is 

based on the virtual connection degree sketch where a compact 

sketch of network traffic is built by generating the associated 

virtual bitmaps for each host. Each virtual bitmap consists of a 

fixed number of bits selected randomly from a shared bit array 

by a new method for recording the traffic flows of the 

corresponding host. The shared bit array is efficiently utilized by 

all hosts since its every bit is shared by the virtual bitmaps of 

multiple hosts. To reduce the “noise” contaminated in a host’s 

virtual bitmaps due to sharing, we propose a new method to 

generate the “filtered” bitmap used to estimate host connection 

degree. Furthermore, it can be easily implemented in parallel 

and distributed processing environments. The experimental and 

testing results based on the actual network traffic show that the 

new method is accurate and efficient. 

Keywords-Bitmap; Data streaming; Host connection degree; 

Virtual Indexing. 

I. INTRODUCTION 

The in-degree/out-degree, defined as the number of distinct 

sources/destinations that a network host connects to during a 

given time window, is an important statistic metric of network 

traffic that provides with insights into network measurement 

and monitoring applications such as host profiling [1], and aids 

fast detection of security attacks [2], [3], etc. To obtain the 

total number of flows generated by a host, one needs to build a 

hash table that keeps track of existing flows to avoid 

duplicating flow records for packets from the same flow. In 

this paper, a flow is defined as the set of all packets with the 

same source and destination addresses in a time window. 

However, it is not practical to obtain host connection degrees 

by building per-host hash tables that are resource intensive to 

maintain for high speed links carrying a huge number of 

simultaneous active hosts and flows. It may not be possible to 

accurately measure and monitor massive network traffic 

simply by upgrading the performance of measuring devices. 

Hence, it is desirable to develop new methods to meet the 

challenges of monitoring high speed network traffic online. 

Estan and Varghese [4] proposed a family of bitmap 

algorithms for estimating the total number of distinct flows on 

high speed links. To estimate each host’s connection degree, it  

need to build a bitmap for each host, which may not be 

scalable to high speed links carrying flows associated a huge 

number of hosts. Zhao et al. [5] proposed a data stream method 

to measure host connection degrees, which is a variant of 

Bloom filter [6] and consists of n×m 2-dimentional bit array. 

Each host is associated with H columns in the bit array 

randomly selected by H hash functions, and one bit in each of 

its associated columns is set as one for each of its packets 

coming. The corresponding H columns of each host can be 

used to estimate its connection degree, since each column can 

be viewed as a direct bitmap as proposed in [7]. The direct 

bitmap method indicates that the number of rows represented 

in the bit array should be set in the order of thousands to 

perform the task of estimating connection degrees of sources 

with thousands of flows. However, most hosts have only 

several flows and only a very small number of hosts have 

thousands of flows, which implies that most columns in the bit 

array are assigned to hosts with a small connection degree, and 

are mostly zeros. To reduce this space inefficiency, Yoon et al. 

[8] build a virtual bitmap for each host by taking bits randomly 

from a shared bit array using a group of hash functions. Each 

host’s virtual bitmap is used to estimate its connection degree 

similar to what is proposed in [7] using a direct bitmap. The 

number of distinct bits in a host’s virtual bitmap varies due to 

hash collisions. There is no guarantee on the quality of the 

estimate of the out-degree of a host whose virtual bitmap is 

generated with many hash collisions. Furthermore, each bit in 

the shared bit array may be shared by several hosts and the 

“noise” contaminated in a host’s virtual bitmap exists while 

estimating its connection degree. In particular, a host with a 

small number of connections is sensitive to the “noise”, since it 

has more bits in its virtual bitmap that are probably 

contaminated by other sources. 

In this paper, we present a new virtual indexing method to 

accurately estimate host connection degrees over high speed 

links. A virtual connection degree sketch data structure is 

designed to build a very compact sketch of network traffic, 

which can be used to estimate the connection degree of each 

host based on the associated virtual bitmaps. Each virtual 

bitmap consists of a fixed number of bits selected randomly 

from a shared bit array by a new virtual bitmap generation 

method. The shared bit array is small, and is efficiently 

utilized by all hosts since its every bit is shared by the virtual 

bitmaps of multiple hosts. The new method is computationally 

efficient since it only needs to set several bits for each 

incoming packet. To reduce the “noise” contaminated in each 

The research presented in this paper is supported in part by National Natural 

Science Foundation (60574087), 863 High Tech Development Plan 

(2007AA01Z475, 2007AA01Z480, 2007AA01Z464, 2008AA01Z415) 

 

 



host’s virtual bitmaps because of sharing, we present a new 

method for generating the “filtered” bitmap used to estimate 

the host connection degree. Furthermore, it can be easily 

implemented in parallel and distributed processing 

environments. Experiments based on the actual network 

traffic show that the new method is truly accurate and 

efficient. It should be noted that the algorithm for measuring 

host out-degrees can also be applied for host in-degrees. 

This paper is organized as follows. In Section II the new 

virtual indexing method is described in details. The 

performance evaluation is presented in Section III. Concluding 

remarks then follow. 

II. VIRTUAL CONNECTION DEGREE SKETCH 

A. Data Structure 

A virtual connection degree sketch (VCDS) consists of a bit 

array A[k] ( 0 1k m≤ ≤ − ) associated with H independent 

groups of hash functions {f1,0, f1,1, …, f1,L-1}, {f2,0, f2,1, …,    

f2,L-1}, …, and {fH,0, fH,1, …, fH,L-1}. Each fi,j ( 1 i H≤ ≤ , 

0 1j L≤ ≤ − ) is a hash function: {0, 1, …, N-1} → {0, 1, …, 

m-1}, where N is the size of source space S. 

Each source s has H corresponding virtual bitmaps Bi(s) 

(1 i H≤ ≤ ) where Bi(s) is defined as a bit array consisting of 

L bits selected randomly from A by the group of hash 

functions {fi,0, fi,1,…, fi,L-1}, that is 

Bi(s) = (A[fi,0(s)], A[fi,1(s)], …, A[fi,L-1(s)]),   1 i H≤ ≤ . 

Bi(s) can be viewed as a direct bitmap [7]  occupied only by 

s. The length of the bit array in a direct bitmap is constant and 

is a vital parameter to estimate the out-degree of s.  However 

the number of distinct bits in Bi(s) is smaller than L, when 

A[fi,0(s)], A[fi,1(s)], …, A[fi,L-1(s)] are selected from A with hash 

collisions. There is no guarantee on the quality of the estimate 

of the out-degree of a host whose virtual bitmap is generated 

with many collisions. For example, when m=10
6
 and L=10

4
, 

the number of distinct bits selected from A by the group of 

hash functions {fi,0, fi,1,…, fi,L-1} is smaller than L with a 

probability of 1-10
-22

 and its expectation is 9950. This 

problem also exists but is not noticed in [8]. To address this 

issue, we propose a virtual bitmap generating method by 

designing 
,i j

f  (1 i H≤ ≤ , 0 1j L≤ ≤ − ) based on the double 

hashing scheme [9] 

, ,1 ,2
( ) ( ) ( ) mod

i j i i
f s s j s mψ ψ= +  

where 
,1i

ψ is a hash function that maps the source space 

uniformly to the range {0, 1, …, m-1}, 
,2i

ψ  is a hash function 

that maps the source space uniformly to the range {1, 2, …,   

m-1}, and m is a prime. It is easily validated that each 
,i j

f  also 

maps the source space uniformly to the range {0, 1, …, m-1}. 

The following theorem shows that each virtual bitmap is 

hashed into L different bits in A. 

Theorem 1. For a source s, L different bits are selected from 

A by each group of hash functions {fi,0, fi,1,…, fi,L-1} 

(1 i H≤ ≤ ), that  is, 

1 2, ,( ) ( )i j i jf s f s≠ ,      
1 2

0 1j j L≤ < ≤ − . 

Proof. (Proof by contradiction) Assume to the contrary that 

there is 
1 2, ,( ) ( )i j i jf s f s= , for 

1 2
j j≠  then 

2 1 ,2
( ) ( ) 0mod

i
j j s mψ− ≡ . 

Since 
2 1

1 1j j L m≤ − ≤ − �  and m is prime, we have 

2 1
0modj j m− ≠  and 

,2
( ) 0mod

i
s mψ ≡ . Note 

,2
( ) 1

i
s mψ ≤ − , 

so we have 
,2

( ) 0
i

sψ = . This contradicts with the definition of 

,2
( ) {1,2,..., 1}

i
s mψ ∈ − .                                                           □ 

Theorem 2. For each Bi(s) (1 i H≤ ≤  and s ∈ S ), denote set 

SBi(s)={fi,j(s)| 0 1j L≤ ≤ − }. Then the probability that any bit 

A[k] ( 0 1k m≤ ≤ − ) is included in Bi(s) is 

                                 { }( )
i

L
P k SB s

m
∈ = .                              (1) 

Proof.  If ( )
i

k SB s∈ and k is the the j-th ( 0 1j L≤ ≤ − ) bit in 

Bi(s)=(A[fi,0(s)], A[fi,1(s)], …, A[fi,L-1(s)]), we have 

k=
,1
( )

i
sψ +

,2
( )

i
j sψ mod m. 

For each 
,2

( )
i

sψ  in {1, 2, …, m-1} and each  j in {0, 1, …, 

L-1}, there is one and only one virtual bitmap contained A[k], 

since 
,1
( )

i
sψ is determined as follows: 

,1 ,2
( ) ( ) mod

i i
s k j s mψ ψ= − . 

Therefore the total number of distinct virtual bitmaps 

contained A[k] is L(m-1). Since each virtual bitmap Bi(s) is 

selected uniformly from the total m(m-1) distinct virtual 

bitmaps, we have (1).                                                       □ 

B. Update Procedure 

Each bit in A is initially set to zero. When a packet p = (s, d) 

arrives, we set the g(s||d)-th bit in each virtual bitmap Bi(s) to 

one. Here g is a uniform hash function with the range {0, …, 

L-1}, and the flow label s||d is the concatenation of source s 

and destination d. As the g(s||d)-th position in Bi(s), 

corresponds to the fi,g(s||d) (s)-th position in A, we only need to 

set H bits for each incoming packet as follows: 

A[fi,g(s||d) (s)] = 1,    1 i H≤ ≤ . 

C. Connection Degree Estimator 

The bits in Bi(s) (1 i H≤ ≤ ) that the flows of source s hash 

into using hash functions {fi,0, fi,1,…, fi,L-1} are denoted as the 

bits used by s in the following part. They are set to one to 

store the flow information of s, so each Bi(s) can be used to 

estimate the out-degree of s similar to the direct bitmap 

proposed in [7]. Since each bit in Bi(s) is selected randomly 

from A and also shared by other sources, the other bits in Bi(s) 

not used by s might also be set to one by flows belonging to 

other sources. This introduces “noise” into the estimation of 

the out-degree of s. Therefore the more bits in Bi(s) are not 

used by s, the more “noise” is generated. The size of the 

virtual bitmap, L, is usually set to thousands to guarantee the 

high accuracy of estimating the out-degree of a source 

associated with a huge number of flows, which will generate a 

large number of bits containing “noise” especially for the 

source associated with a small number of flows. In what 

follows, we introduce a new “filtered” bitmap generation 

method to reduce the “noise” generated by other sources. The 



“filtered” bitmap Bs defined as a bit vector is computed from 

B1(s), B2(s), …, and  BH(s) as follows:  

1 2
( ) ( ) ( )

s H
B B s B s B s= ⊗ ⊗ ⊗�  

where ⊗  is the bit-AND operation. For any flow (s, d) of s, 

the g(s||d)-th bit in each Bi(s) (1 i H≤ ≤ ) is set to one, so the 

g(s||d)-th bit in Bs is still one. Define  ( )jϕ  as follows: 

1
( ) 1

jOD
m L L

j
m m L

ϕ
−  

= + − 
 

                      (2) 

where ODj is the out-degree of source j. Then for any given 

bit in each Bi(s) not used by s, the probability that it is set to 

zero by any other source j is ( )H jϕ   based on Theorem 2. 

Therefore it is a noise bit when all corresponding bits in Bi(s) 

(1 i H≤ ≤ ) are ones with probability 

( )

1
1

( )

H
H

sq
sϕ

 Φ
= − 
 

 

where ( )
j

jϕΦ = ∏ . Suppose m and L are given, we want to 

optimize H to minimize the “noise” contaminated in the 

“filtered” bitmap Bs. There are two competing forces: for each 

bit in Bs not used by s, using larger H gives us a greater 

chance of finding a zero bit in its H corresponding bits in Bi(s); 

but using more bitmaps results in more bits in A being set to 

one, which increases the probability that a host’s virtual 

bitmap is contaminated with “noise”. When m>>L, we have 

( )( )

1 ( ) 1
H

s H
q Hτ≈ = − Φ . The impact of H on the “noise” is 

described in the following lemma. 

Lemma 1. ( )( ) 1
H

H
Hτ = − Φ  decreases with 

1
0,

ln
H

 
∈ − 

Φ 
, 

increases with 
1

,
ln

H
 

∈ − +∞ 
Φ 

, and obtains the minimum 

at 
1

ln
H = −

Φ
. 

Proof. Define ln ( )y Hτ= , then its first derivative and 

second derivative are 

( ) ln
ln 1

1

H

H

H

dy H

dH

Φ Φ
= − Φ −

− Φ
 

( )

( )

2

2 2

2 2 ln ln

1

H H

H

Hd y

dH

Φ − Φ − Φ Φ
=

− Φ
. 

It can be easily shown that 0
dy

dH
<  when 

1
0,

ln
H

 
∈ − 

Φ 
 

and 0
dy

dH
>  when 

1
,

ln
H

 
∈ − +∞ 

Φ 
, therefore function 

( )Hτ  decreases with 
1

0,
ln

H
 

∈ − 
Φ 

 and increases with 

1
,

ln
H

 
∈ − +∞ 

Φ 
. Meanwhile we have 

1

ln

0
H

dy

dH =−
Φ

=  and 

2

2
1

ln

0

H

d y

dH
=−

Φ

> , so the optimal value of ( )Hτ  is obtained at 

1

ln
H = −

Φ
.                                                        □ 

In what follows a new method is proposed to estimate the 

out-degree of source s. For any given bit in Bs not used by s, 

the probability that no other source uses it either is 
( )

1
1 s

s
p q= − . Denote the total number of bits in Bs not used by 

s as Us, the expectation of 
sBU  defined as the total number of 

zero bits in Bs is 

           ( ) ( ) ( )
sB s s s s

E U E U p p E U= = .                              (3) 

The probability that a given bit in Bs is not used by s is 

1
1

sOD

L

 
− 

 
,  so the expectation of Us is computed as follows: 

                       ( )
1

1
s s

OD OD

L
s

E U L Le
L

− 
= − ≈ 

 
.                  (4) 

ps is computed with inputs of each hosts’ out-degrees which 

are unknown. We find that ps can be estimated from A. 

Denote ( )
i

AB s  as the bits in A[k] ( 0 1k m≤ ≤ − ) except 

A[fi,0(s)], A[fi,1(s)], …, A[fi,L-1(s)]. For each bit in ( )
i

AB s , the 

probability of being set to zero is 
( )

H

s
s

α
ϕ

Φ
= . Let 

'

( )iB sU  be the 

total number of zero bits in ( )
i

AB s . Then 

( )'

( )
( )

iB s s
E U m L α= − .                                   (5) 

Since ( )( )

1
1 1 1

Hs

s s
p q α= − = − − , we have the following 

equation from (5): 

( )'

( )
1 1

i

H

B s

s

E U
p

m L

 
 = − −
 −
 

.                             (6) 

From (3), (4) and (6), we have 

( ) ( )'

( )
ln ln 1 1

s i

H

B B s

s

E U E U
OD L L

L m L

  
  ≈ − + − −
  −   

.     (7) 

Replacing ( )
sB

E U  and ( )'

( )iB s
E U  in (7) by the 

instantaneous values, 
sBU   and 

'

( )iB sU  obtained from Bs and 

( )
i

AB s  respectively, we have the following estimate of  

( )i

s
OD  (1 i H≤ ≤ ): 

'

( )( )
ln ln 1 1s i

H

B B si

s

U U
OD L L

L m L

  
 = − + − − 

  −  

.           (8) 

The first term of the right hand side of (8) corresponds to 

the estimator used in the direct bitmap [7]. The second term of 

the right hand side of (8) is used to compensate for the error 

caused by the “noise” generated by the other sources.  



Finally the following equation gives a more accurate 

estimator of the out-degree of s: 
( )

1

est i

s s
i H

OD medianOD
≤ ≤

= . 

D. Combination Operation 

A VCDS A can be distributed across G routers as follows. 

Each router i (1 i G≤ ≤ ) can maintain a VCDS Ai, based on 

the traffic that it observes.  Based on all network traffic at all 

G routers, VCDS A can be calculated by the following 

equation  

1 2 G
A A A A= ⊕ ⊕ ⊕�  

where ⊕  is the bit-OR operation. Each distributed node i 

(1 i G≤ ≤ ) only needs to send Ai to the control center, which 

greatly reduces the amount of communications between the 

distributed nodes and the control center. 

E. Parameter Configuration 

Since the total complexity for updating each packet is O(H),  

H should be small. If the out-degree of source s is much larger 

than LlnL + O(L), we will obtain all 1’s in its corresponding 

virtual bitmaps with high probability due to the result of the 

“coupon collector’s problem” [10]. In this case, the out-

degree of s cannot be estimated accurately, and we only know 

that it is not smaller than LlnL. To address this issue, we can 

directly use a larger L or apply the pre-sampling method 

proposed in [8]. 

III. TESTING AND PERFORMANCE EVALUATION. 

A. Data Collection 

Experimental data used in this paper is based on the 

network traffic of the backbones of CERNET (China 

Education and Research Network) Northwest Regional Center 

and the campus network of Xi’an Jiaotong University with 

more than 300000 hosts.  The actual traffic data was collected 

at an egress router with a bandwidth of 1.5Gbps from a B-

class network by using TCPDUMP. The total number of 

collected packets is about 1.2×10
8
. There are 1.4×10

5
 distinct 

sources and 4.7×10
5
 distinct flows. We further compare 

VCDS with the state-of-the-art method compact spread 

estimator (CSE) [8]. 

B. Host Out-Degree Estimation 

The following experiments are used to evaluate the 

performance of estimating host out-degrees provided by 

VCDS. The relative error of estimated out-degree of host s is 

defined as | | /est

s s s
OD OD OD− , where est

s
OD  is its estimated 

out-degree and ODs is its actual out-degree. Fig. 1 and 2 show 

the relative errors of host out-degree estimates for different H, 

where m=4 M and L=2048. The accuracy of VCDS first 

increases with H and then decreases with H, which is 

consistent with Lemma 1.  

The impact of L is shown in Fig. 3, where H=5 and m=4 M. 

For a host with a small out-degree, the error of its estimated 

out-degree increases with L, since a larger value of L 

introduce more unused bits in the host’s virtual bitmaps, 

which might be contaminated. However, a smaller value of L 

generates a larger estimation error when the out-degree is 

large similar to the direct bitmap algorithm [7]. 
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(a). H = 1                                              (b). H = 3 
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(c). H = 5                                              (d). H = 15 

Figure 1.  Actual vs estimated out-degree for different H 
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(a). Average relative error for small out-degrees 

1000 1050 1100 1150 1200
0

0.01

0.02

0.03

0.04

0.05

0.06

out-degree

a
v
e
ra

g
e
 r

e
la

tiv
e
 e

rr
o
r

 

 
CSE

VCDS H=1

VCDS H=3

VCDS H=5

 

(b). Average relative error for large out-degrees 

Figure 2.  Average relative error for different H 
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(a). Average relative error for hosts with small out-degrees                             (b). Average relative error for hosts with large out-degrees 

Figure 3.  Average relative error for different L 
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(a). Average relative error for hosts with small out-degrees                               (b). Average relative error for hosts with large out-degrees 

Figure 4.  Average relative error for different m 

Fig. 4 shows the average relative errors of host out-degree 

estimates for different m, where H=5 and L=2048. We 

observe that the accuracy of estimated out-degrees is 

improved by increasing m, which reduces the “noise”, 

especially for hosts with small out-degrees. For a host with a 

small out-degree, the number of unused bits in its virtual 

bitmap is larger than that of a host with a large out-degree. 

Therefore the estimated out-degree of a host with a small out-

degree is more sensitive to the “noise”. 

IV. CONCLUSIONS 

In this paper we present a data streaming method VCDS for 

estimating host connection degrees over high speed links. 

VCDS can generate a very compact sketch of network traffic, 

and the connection degree of each host is estimated by the 

associated virtual bitmaps consisting of a fixed number of bits 

randomly selected from a shared bit array. The experimental 

and test results based on the actual network traffic show that 

the new method is accurate and computationally efficient. 
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