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Abstract—Traffic statistics are fundamental for many net-
work measurement tasks like heavy hitter identification, traffic 
matrix estimator, anomaly detection, etc. However, traditional 
techniques like NetFlow and sFlow only provide coarse-grained 
statistics due to packet or flow sampling. Even Software Defined 
Networking (SDN) offers fine-grained traffic statistics collection, 
most of existing methods focus on specific applications and thus 
lack generality. To this end, we propose CounterMap, a generic 
traffic statistics collection and query platform. CounterMap 
maintains a full map of flow counters by actively polling switches 
and passively monitoring flow timeouts. For efficient storage and 
query, CounterMap stores the counters in fast off-the-shelf in-
memory data store, and offers a generic SQL-like query language. 
With the CounterMap language, applications can gain visibility 
into both existing and historical flows, without querying the 
dataplane devices themselves. We show how network applica-
tions benefit from CounterMap, with higher measurement accu-
racy and lower dataplane overhead.  

Keywords—Software Defined Network; traffic statistics; query 
language 

I.  INTRODUCTION  
Traffic statistics collection is important for various network 

applications. There is a fundamental tradeoff between overhead 
and accuracy for traffic statistics collection. Tools like NetFlow 
[1] and sFlow [2] use packet or flow sampling to reduce collec-
tion overhead, while only provide coarse-grained statistics.  

The recent advance of Software Defined Network (SDN) 
provides new opportunities for fine-grained traffic statistics 
collection. For example, OpenFlow [5] allows applications to 
actively query switches for per-flow statistics like byte/packet 
count. In addition, the controller can also passively sense flow 
arrivals and leaves by monitoring OpenFlow messages sent by 
switches. Some studies leverage the fine-grained flow statistics 
collection feature of OpenFlow to achieve lightweight security 
functions [7-8]. However, we observe that the traffic statistics 
collection mechanism in OpenFlow has three limitations: 

(1) Lack of visibility. Currently, the OpenFlow flow table 
size is strictly constrained by the TCAM capacity. For example, 
CENTEC v350 can only hold 2k flow entries. Therefore, 
switches need to frequently time out flows, whose counters will 
be permanently lost and become invisible to applications. We 
will show in Section II that the counters for expired flows are 
also important for some applications.  

(2) Low abstraction level. The traffic statistics collection 
interface provided by OpenFlow has a low abstraction level 
[16]. As a result, programmers must tune the spatial and tem-
poral granularity by setting proper wildcard values and query-

ing period, and then filter out the results. This makes the pro-
grams complicated and error-prone. Even SDN languages like 
Frenetic [16] and Pyretic [17] support flow statistics queries at 
a higher level, they cannot provide statistics of historical flows 
which are important for traffic analysis and prediction.  

 (3) High data redundancy. Currently, when multiple ap-
plications need traffic statistics simultaneously, they have to 
query the data plane for counters individually [16]. This will 
result in redundant counters. Moreover, multiple switches on a 
flow’s path may have the same entries, and querying all these 
switches will also result in redundant counters. The above 
cross-application and cross-switch redundancy can impose 
large overhead on switches and OpenFlow channel. Previous 
studies [13-14] only consider the cross-switch redundancy, 
without addressing the cross-application redundancy. 

To this end, we propose CounterMap, a generic traffic sta-
tistics collection and query platform for SDN applications. 
CounterMap addresses the above three limitations as follows. 
First, CounterMap maintains counters for both existing and 
expired flows, such that applications always have access to 
statistics of all flows that ever exist during a specific period, 
and reduces cross-application redundancy as well. Secondly, 
CounterMap stores the counters in in-memory key-value store, 
and offers a SQL-like query language for statistics query. Third, 
CounterMap uses a heuristic algorithm to poll switches, in or-
der to reduce counter redundancy, and at the same time ensur-
ing load balance among switches.  

The key challenges faced by us include: (1) how to make 
the query language expressive enough to support a large spec-
trum of applications, and to the most extent reduce lines of 
codes for applications; (2) how to make the request, storage, 
and retrieval of flow counters efficient enough, so as to scale to 
a large networks. We will show how CounterMap addresses 
these challenges in Section III.  

In summary, the contribution of this work is three-fold: 
 We demonstrate the importance of expired flows for 

network applications, motivating the need to maintain a 
full map of counters. 

 We design and implement CounterMap, a new platform 
for flow statistics collection and query in SDN.  

 We propose a heuristic switch polling algorithm to re-
duce counter redundancy among switches, and test it 
with various datacenter and campus network topologies. 

II. MOTIVATION 

A. The Importance of Expired Flows 
Due to the limited flow table size, flow entry expiration is 

frequent for SDN switches. Thus, applications can only retrieve 



counters for flows that exist in the flow table. However, miss-
ing expired flows can result in suboptimal performance for 
applications. To demonstrate this, we implement a simple en-
tropy-based DDoS detection algorithm, and compare the detec-
tion accuracy with and without expired flow entries, respec-
tively. 

We use Mininet [6] to emulate a topology with one switch 
and four hosts, and generate background traffic and DDoS traf-
fic with Scapy. We let the DDoS attack begin at the 30th sec-
ond, which lasts for 30 seconds. At the same time, we let the 
controller send a flow_statistics_request message every 2 sec-
onds. After retrieving flow counters, we calculate the entropy 
for destination IP (Dst_IP) and destination port (Dst_Port). The 
idle_timeout of flow entries is set to 10 seconds, and we collect 
expired flow entries by monitoring the flow removal messages 
sent by switches. The experiment lasts for 2 minutes. Fig. 2 
reports the entropy of Dst_IP and Dst_Port when no expired 
entries, 5 seconds of expired entries, and 10 seconds of expired 
entries are used, respectively. Note the average entropy value 
of Dst_Port for the three cases is 1.633, 0.844 and 0.753, re-
spectively. We can see that the detection accuracy increases 
when more expired flow entries are added, demonstrating the 
importance of expired flow entries.  

 

 
Fig. 2. The entropy for Dst_IP and Dst_Port, when using (1) no expired en-
tries, (2) 5 seconds of expired entries, and (3) 10 seconds of expired entries. 

B. The Overhead of Statistics Query 
In OpenFlow, when applications request flow statistics, 

switches should return the counters of all queried flows. This 
will inevitably impose overhead on switches. In the following, 
we will use both emulated network and real testbed to numeri-
cally study how flow statistics queries affect the performance 
of switches.  

Fig. 1(a) shows the testbed, which consists of a Pica8 P-
3297 switch and three hosts [15]. We let client 1 send packets 
with random source IP addresses to the server, in order to 
simulate background flow arrivals. At the same time, we let the 
client 2 send 100 packets with random source IP addresses to 

the server, and let the server count the number of packets re-
ceived from the client 2 with tcpdump, denoted by #Rev. Then, 
we vary the background flow arrival rate, and calculate the 
flow failure rate as 1 - #Rev/100. Fig. 1(b) reports the results, 
showing that the failure ratio increases with background flow 
arrival rate, especially when the statistics query frequency is 
high. This means that statistics query indeed affects the per-
formance of switches in setting up new flows. We do the same 
experiment on an emulated network using Mininet, running on 
a Linux server with an Intel Core i5-4590 CPU@3.30GHz and 
16 GB memory. The trend is similar with that of the testbed. 

Then, we vary the number of queried flow entries and 
measure the CPU load for both Pica8 and OVS using the Pi-
ca8’s built-in monitoring utility and the Linux top command, 
respectively. Fig. 1(c) reports the relationship between the 
switch’s CPU load and the number of flow entries, for Pica8 
and OVS. Not surprisingly, the CPU load increases when more 
flow entries are queried for both Pica8 and OVS. 

III. DESIGN 
In this section, we first give an overview of CounterMap 

architecture, then present the syntax of the flow statistics query 
language, and finally show how to use CounterMap with ex-
amples. 

A. System Architecture 
As shown in Fig. 3, CounterMap adds four modules into 

the vanilla controller. The Counter Polling Scheduler strategi-
cally queries counters from switches periodically or on demand, 
and puts the counters into the Counter Info Base (CIB). The 
Counter Query Compiler parses the queries from APPs, and 
then either retrieves flow statistics from the CIB, or requests 
the counters directly from switches by invoking the Counter 
Polling Scheduler. The Expired Flow Tracker monitors expired 
flows and stores their counters into CIB for later queries.  
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Fig. 3. System Architecture. Shaded parts belong to CounterMap.  
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Fig. 1. Experiments showing the counter polling overhead. (a) Topology; (b) The packet loss rate trend under different flow arrival rate and request rate ;  (c) 
the CPU load of pica8 and OVS as the increase of flow entry. 

 



B. CounterMap Query Language  
The design of CounterMap query language is driven by 

two goals: first, it should be expressive enough to support var-
ious SDN applications that require flow statistics; second, it 
should be intuitive enough for programmers to use. At a high 
level, the query language lets programmers write SQL-like 
clauses to select counters from the CIB. The queries support 
features like filtering, grouping, and computing, which will be 
discussed in details below. Table I shows the syntax of the 
query language. 

A SELECT (* | m | c | f(m | c)) clause specifies the re-
turned results, including the matching fields (e.g., TCP-five 
tuple) and counters (i.e., packet count and byte count) of flow 
entries. In addition, SELECT also supports simple functions 
like MAX, MIN, SUM, AVG, and COUNT over the returned 
results. 

A FROM (normal | expired | full | dp) clause specifies the 
data sources to query from. Currently, four data sources are 
supported: normal stands for all active flows, expired stands 
for expired flows, and full stands for their combination. These 
three data sources are all maintained by the CIB. Finally, dp 
means querying the data plane directly, rather than from CIB. 

A WHERE(pred) clause filters the results according to the 
predicates pred. Predicates can be src-ip = 
“10.0.0.1”,dst-port!=8080, packetCount >= 
80, etc., or can be constructed using logical operators like 
conjunction (and), disjunction (or), and negation (not). For 
example, where not (src-ip = “10.0.0.1” and 
dst-ip = “10.1.0.0/24”) filters out entries of flows 
sent from IP address 10.0.0.1 to IP addresses 10.1.0.0/24. 

A GROUPBY (m1[,m2,…,mn] | time) clause splits the que-
ried results into subsets, according to matching fields or re-
trieval time. For example, suppose there are two source IP 
addresses 10.0.0.1 and 10.0.0.2, and two destination IP ad-
dresses 10.0.0.3 and 10.0.0.4. Then, the query SELECT 
SUM(packetCount) FROM normal GROUPBY src-
ip, dst-ip divides the selected packet counters into four 
subsets (each for a source-destination IP pair), and returns the 
sum of packet count for each subset. 

A TIMERANGE (time1,time2 [,step]) clause specifies the 
time range within which counters should be retrieved, with 
querying period specified by step. Note that time2 can be 
wildcard “*” to continuously retrieve the counters until the 
query is stopped. An application can specify the querying in-
terval by setting step in unit of second. For example, 
TIMERANGE (10:00:00, 10:10:00, 30) returns the results at 
10:00:00, 10:00:30, 10:01:00, etc. 

A SAMPLE(ratio) clause can be used to sample entries 
from the CIB, in order to save query cost. For example, if the 
parameter ratio is set to 0.6, then 60% of all matched flows 
will be returned. 

A LIMIT(begin[:end | -1]) clause returns flow entries from 
begin to end rows, ranked by storage time and collection order. 
Similarly, LIMIT (begin) returns flow entries from the 1st to 
begin row and LIMIT (begin, -1) returns the begin to the last 
row. 

CounterMap also provides several commands to execute 
queries. An APP can execute a query using Execute (que-
ry,frequency,times). For example, Execute (query,10s,5) will 
query the database every 10s and execute 5 times in total. An 

APP can also use the Adjust(statsCycle) to flexibly modify the 
statistics query period.  

C. Using CounterMap 
To show how CounterMap works, we use the above query 

language to implement three representative applications, in-
cluding DDoS attack detection, heavy hitter identification, and 
traffic matrix estimation. We assume that the time range of 
counters stored in the current CIB is [08:00:00,12:00:00], and 
the statistics request period is set to 5 seconds. 

TABLE I.  COUNTERMAP QUERY SYNTAX 

Queries 
 
 
 
 
 
 
Matches  
Counters 
Functions 
Predicates 
 
 

q 
 
 
 
 
 

 
m 
c 
f 
pred 
 
 

:: = SELECT (* | m | c | f(m | c))  
FROM (normal | expired | full | dp)  
WHERE (pred)  
GROUPBY (m1[,m2,…,mn] | time) 
TIMERANGE (time1,time2 [,step])  
SAMPLE (ratio) 
LIMIT  (begin[:end | -1]) 

:: = src-ip | dst-ip | src-port | dst-port | proto 
:: = packetCount | byteCount 
:: = MAX | MIN | SUM | AVG | COUNT 
:: = field > value | field < value  

| field >= value | field <= value  
| field = value | field != value  
| pred and pred | pred or pred | not pred 
| pred (pred) | (pred) pred  
| field / mask 

 

Distributed Denial of Service (DDoS) Detection. We 
consider a DDoS attack where a large number of packets with 
different source IP addresses and port numbers arrive at the 
same destination. For detection, we choose the entropy-based 
method which utilizes the Dst_IP and Dst_Port information of 
the flow entry [10]. The detection method proceeds as follows. 

First, we query all flows, grouped by their storage time, 
and count the total number of items in each group. The re-
sults will be a vector, denoted by Total, where Total[t] cor-
responds to the time instance t.  

SELECT time,COUNT(time) 
FROM full 
GROUPBY time 
TIMERANGE (11:30:00,12:00:00) 
Second, we query all flows, grouped by their time and 

Dst_IP, and count the total number of items in each group. 
The results will be a matrix DstIP, where DstIP[t][i] is the 
number of occurrence of the ith destination IP at time t.   

SELECT time, dst-ip, COUNT (dst-ip) 
FROM full 
GROUPBY time, dst-ip 
TIMERANGE(11:30:00,12:00:00) 
Third, we compute the probability p[t][i] for the ith 

Dst_IP at time t as p[t][i]=DstIP[t][i]/Total[i]. Then, we can 
compute the entropy of destination IP as: 
                   

( )
21

[ ] [ ][ ]log [ ][ ]n t

i
Entropy t p t i p t i                    (1) 

Similarly, we can compute the entropy of destination port. 
If there is significant decrease in either DstIP entropy or 
DstPort entropy, we should suspect that there may be DDos 



attack. Then, we can query more fine-grained flow statistics by 
adjusting the statsCycle to smaller values with the command 
Adjust(statsCycle), and examine information from 12:00:00 to 
12:10:00 by calling Execute (query,1s,600), where  query will 
fetch data from full with TIMERANGE (12:00:00,*).  

Comparatively, if we implement the above detection meth-
od with OpenFlow, we need to classify the returned flows into 
groups, and count the number of items in each group ourselves. 
This requires more lines of codes, and is thus more error-prone. 
In addition, the programmer cannot look back into a previous 
period, and retrieve the counters. 

Heavy Hitter Identification. Heavy hitter refers to a small 
number of flows that constitute a majority of bytes or packets. 
For example, suppose we are interested in which (dst-ip,dst-
port) pair contributes most to the total number of packets be-
tween 11am to 12am, we can make the following query:  

SELECT time,dst-ip,dst-port,SUM(packetCount) 
FROM normal 
GROUPBY time,dst-ip,dst-port 
TIMERANGE (11:00:00,12:00:00) 
After obtaining the results, we can compare them with a 

given threshold, in order to identify the heavy hitter. Suppose 
the set of flow with destination IP 10.0.0.1 and port 21 is iden-
tified as a heavy hitter, we can look at its detailed information 
by making the following query:  

SELECT * 
FROM full 
WHERE dst-ip=10.0.0.1 and dst-port=21 
TIMERANGE (11:00:00,12:00:00) 
Traffic Matrix Estimation. A traffic matrix can reveal the 

volume of traffic between different origin-destination pairs in a 
network. To build the traffic matrix from 8am to 9am, we can 
make the following query: 

SELECT time,src-ip,dst-ip,SUM(byteCount) 
FROM full 
GROUPBY time, src-ip,dst-ip 
TIMERANGE (8:00:00,9:00:00) 

D. Optimization 
According to the experiment results in section II, the coun-

ter polling process imposes a non-negligible overhead on 
switches. Thus, we should optimize the counter polling strategy 
in order to reduce such overhead. In the following, we will 
present a preliminary step, and leave full optimization as future 
work. 

Let F and S be the set of flows and switches, respectively, 
with |F|=m and |S|=n. Let Am×n be a Boolean matrix: Ai,j=1 if 
flow i traverses switch j, and Ai,j=0 otherwise. Let Cj be the set 
of flows that traverse switch j. Let I be a vector defined as Ij=1 
if switch j is selected for polling, and Ij =0 otherwise. Let Lj be 
the processing capacity of the switch j.  

We assume that the general statistics querying cost (either 
communication or computation cost) of a switch j can be de-
composed into two parts: a constant cost Bj, and a variable cost 
Rj|Cj|, where Rj is a coefficient. Take the communication cost 
for example, a flow_statistics_reply message has a minimum 
length of 82 bytes, and a variable length of 56 bytes per flow 
entry, according to OpenFlow 1.3. Then the counter polling 
problem can be formulated as the following mixed integer pro-
gram: 

              ,

min  ( | |)

. .   1,  

        ( | |) ,  

        {0,1}

j j j jj S

i j jj S

j j j j j

j

B R C I

s t A I i F

B R C I L j S

I

                       (2) 

This is a typical minimum set cover problem, which is NP-
hard. In the following, we propose a simple heuristic algorithm 
to find an approximate solution. Algorithm 1 summarizes the 
process of Covered Flow Selection (CFS) algorithm always 
selects the switch which is the most cost-effective in each 
round. Specifically, we define the weight of switch j as: 

                               | |
| |

j

j j j
j

C
B R C

w                                       (3) 

, where 
j jC C  is the set of rules that have not been covered 

by any switch already selected. 
 

Algorithm 1 Covered Flow Selection Algorithm 
Input: F: the set of all flows, S: the set of all switches, Cj: the 
flows that traverse switch j.  
Output: SW: the switches that have been selected for polling 

1: SW ← {} // set of selected switches 
2: CF ← {}  // set of flows covered by selected switches 
3: C'j ← Cj, j  S // flows that traverse switch j but have not 

been covered by any selected switch 
4: while CF != F do 
5:    compute ws  using Eq.(3) for each switch s  S \ SW 
6:    find a switch s  S with the maximal weight, while satis-

fying | |s s s sB R C L  
  7:    SW ←SW  {s}, CF← CF  Cs 

8:    C'j  ← C'j \  Cs, j S \ SW  
9: end while 

10: return SW 

IV. IMPLEMENTATION AND EVALUATION 

A. Implementation 
We prototype CounterMap based on Floodlight. For Coun-

ter Information Base, we use Redis [12], an in-memory key-
value store that supports various data structures such as hashes, 
lists and set. We implement the Counter Query Compiler with 
a parser that parses queries and an execution unit that interacts 
with the Redis data store.  The execution unit evaluates clauses 
in the order of FROM, SAMPLE, TIMERANGE, WHERE, 
GROUPBY, LIMIT, and SELECT. To speed up the execution, 
we use the LUA script language provided by Redis since ver-
sion 2.6.0. 

B. Evaluation 
In the following, we verify the effectiveness of the CFS al-

gorithm with experiments. 
Setup. We use Mininet to emulate different network topologies, 
including FatTree, BCube, DCell, Stanford campus backbone 
network, and China Education and Research NETwork 
(CERNET), as shown in Table II. We run Mininet on a Linux 
server with an Intel Core i5-4590 CPU@3.30GHz and 16 GB 



memory. In our experiment, we generate flows with pingall. 
For comparison, we use both the vanilla and the CounterMap-
enabled Floodlight controller. The controller sends flow statis-
tics requests every 2 seconds, and the idle_timeout of flow en-
tries is set to 15 seconds. 
Results. As shown in Table II, CFS reduces the number of 
polled switches by 29%-55%, and the number of queried en-
tries by 55%-77%. Since cross-switch redundancy is not a 
main focus of this paper, we have not fully optimized CFS. 
While the reduction rate is already acceptable. 

TABLE II.  COMPARISON RESULTS OF CFS AND OPENFLOW FOR 
DIFFERENT TOPOLOGIES 

topologies size #polled switches #queried entries 
OF  CFS ratio OF CFS ratio 

FatTree(4) 20 20 9 55.0% 10226 3526 65.5% 
FatTree(6) 45 17 12 29.4% 10934 2473 77.4 
BCube(1,4) 24 19 10 47.4% 9835 3232 67.1% 
BCube(1,6) 48 20 10 50.0% 9033 2366 73.8% 
DCell(1,4) 25 19 10 47.4% 9557 2715 71.6% 
DCell(1,6) 49 21 14 33.3% 9609 4289 55.4% 
Stanford 26 20 12 40.0% 8566 3296 61.5% 
CERNET 41 13 9 30.7% 8830 3747 57.6% 

 

V. RELATED WORKS 
There are many traditional flow collection tools like Net-

Flow [1], sFlow [2], Sniffer [3] and SNMP [4]. With the ad-
vance of SDN, some statistics collection schemes have been 
proposed. Here, we roughly classify them into two categories, 
flow collection methods and switch polling strategies.  

There are some flow collection methods based on Open-
Flow, For example, [8] presents a lightweight DDoS detection 
method whose flow collection module periodically requests 
flow entries from all flow tables of switches. Considering the 
scalability and cost of OpenFlow statistics collection, [10] 
combines OpenFlow and sFlow to detect and mitigate the 
anomaly detection, which separates the data collection process 
from the SDN control plane by the employment of sFlow. 
However, packet sampling can lower detection accuracy. In 
order to reduce flow monitoring cost, FlowSense [11] propos-
es a push-based passive flow monitoring approach, which lis-
tens for PacketIn and FlowRemoved messages to compute the 
link utilization between switches. PayLess [9] provides a flex-
ible RESTful API at different aggregation levels for monitor-
ing applications and introduces a flow statistics algorithm with 
low-overhead and high-accuracy. However, PayLess neglects 
the influence of expired flow entries on monitoring accuracy. 

Switch scheduling strategy is essential to reduce the que-
rying cost. OpenTM [13] proposes several algorithms for de-
ciding which switches to query. However, the extra cost is 
unneglectable when there are large active flows and it is de-
signed only for the traffic matrix application. FlowCover [14] 
formulates the communication cost of flow statistics request 
and reply as a weighted set cover problem and presents a heu-
ristic switch polling scheme to reduce the cost. However, 
FlowCover only considers communication cost, while neglect-
ing other important aspects like switch load. 

Some SDN programming languages like Frenetic [16] and 
Pyretic [17] also support flow statistics queries. Different from 

CounterMap, they directly translate the queries into OpenFlow 
messages. Therefore, they can only return the counters of exist-
ing flows, while cannot provide historical statistics, which we 
have shown are also important for SDN applications. 

VI. CONCLUSION AND FUTURE WORK 
This paper presented CounterMap, a generic flow statistics 

collection and query platform for SDN applications. Counter-
Map actively polls counters of existing flows from OpenFlow 
switches, tracks counters of expired flows, and combines them 
to form a full map of counters across time. Built atop in-
memory data store, CounterMap offers a SQL-Like query lan-
guage that can be easily used by various applications. We de-
signed a switch polling algorithm, and showed that it could 
reduce the overhead on the data plane. Our future work in-
cludes (1) improving the expressiveness of the query language; 
(2) further reducing the data plane overhead with more intelli-
gent counter collection methods (e.g., wildcard-based). 
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