
978-1-5386-2704-4/17/$31.00 ©2017 IEEE

CounterMap: Towards Generic Traffic Statistics
Collection and Query in Software Defined Network

Jiamin Liu, Peng Zhang, Huanzhao Wang, and Chengchen Hu

Department of Computer Science and Technology
Xi’an Jiaotong University, Xi’an, China

Abstract—Traffic statistics are fundamental for many net-
work measurement tasks like heavy hitter identification, traffic
matrix estimator, anomaly detection, etc. However, traditional
techniques like NetFlow and sFlow only provide coarse-grained
statistics due to packet or flow sampling. Even Software Defined
Networking (SDN) offers fine-grained traffic statistics collection,
most of existing methods focus on specific applications and thus
lack generality. To this end, we propose CounterMap, a generic
traffic statistics collection and query platform. CounterMap
maintains a full map of flow counters by actively polling switches
and passively monitoring flow timeouts. For efficient storage and
query, CounterMap stores the counters in fast off-the-shelf in-
memory data store, and offers a generic SQL-like query language.
With the CounterMap language, applications can gain visibility
into both existing and historical flows, without querying the
dataplane devices themselves. We show how network applica-
tions benefit from CounterMap, with higher measurement accu-
racy and lower dataplane overhead.

Keywords—Software Defined Network; traffic statistics; query
language

I. INTRODUCTION
Traffic statistics collection is important for various network

applications. There is a fundamental tradeoff between overhead
and accuracy for traffic statistics collection. Tools like NetFlow
[1] and sFlow [2] use packet or flow sampling to reduce collec-
tion overhead, while only provide coarse-grained statistics.

The recent advance of Software Defined Network (SDN)
provides new opportunities for fine-grained traffic statistics
collection. For example, OpenFlow [5] allows applications to
actively query switches for per-flow statistics like byte/packet
count. In addition, the controller can also passively sense flow
arrivals and leaves by monitoring OpenFlow messages sent by
switches. Some studies leverage the fine-grained flow statistics
collection feature of OpenFlow to achieve lightweight security
functions [7-8]. However, we observe that the traffic statistics
collection mechanism in OpenFlow has three limitations:

(1) Lack of visibility. Currently, the OpenFlow flow table
size is strictly constrained by the TCAM capacity. For example,
CENTEC v350 can only hold 2k flow entries. Therefore,
switches need to frequently time out flows, whose counters will
be permanently lost and become invisible to applications. We
will show in Section II that the counters for expired flows are
also important for some applications.

(2) Low abstraction level. The traffic statistics collection
interface provided by OpenFlow has a low abstraction level
[16]. As a result, programmers must tune the spatial and tem-
poral granularity by setting proper wildcard values and query-

ing period, and then filter out the results. This makes the pro-
grams complicated and error-prone. Even SDN languages like
Frenetic [16] and Pyretic [17] support flow statistics queries at
a higher level, they cannot provide statistics of historical flows
which are important for traffic analysis and prediction.

 (3) High data redundancy. Currently, when multiple ap-
plications need traffic statistics simultaneously, they have to
query the data plane for counters individually [16]. This will
result in redundant counters. Moreover, multiple switches on a
flow’s path may have the same entries, and querying all these
switches will also result in redundant counters. The above
cross-application and cross-switch redundancy can impose
large overhead on switches and OpenFlow channel. Previous
studies [13-14] only consider the cross-switch redundancy,
without addressing the cross-application redundancy.

To this end, we propose CounterMap, a generic traffic sta-
tistics collection and query platform for SDN applications.
CounterMap addresses the above three limitations as follows.
First, CounterMap maintains counters for both existing and
expired flows, such that applications always have access to
statistics of all flows that ever exist during a specific period,
and reduces cross-application redundancy as well. Secondly,
CounterMap stores the counters in in-memory key-value store,
and offers a SQL-like query language for statistics query. Third,
CounterMap uses a heuristic algorithm to poll switches, in or-
der to reduce counter redundancy, and at the same time ensur-
ing load balance among switches.

The key challenges faced by us include: (1) how to make
the query language expressive enough to support a large spec-
trum of applications, and to the most extent reduce lines of
codes for applications; (2) how to make the request, storage,
and retrieval of flow counters efficient enough, so as to scale to
a large networks. We will show how CounterMap addresses
these challenges in Section III.

In summary, the contribution of this work is three-fold:
 We demonstrate the importance of expired flows for

network applications, motivating the need to maintain a
full map of counters.

 We design and implement CounterMap, a new platform
for flow statistics collection and query in SDN.

 We propose a heuristic switch polling algorithm to re-
duce counter redundancy among switches, and test it
with various datacenter and campus network topologies.

II. MOTIVATION

A. The Importance of Expired Flows
Due to the limited flow table size, flow entry expiration is

frequent for SDN switches. Thus, applications can only retrieve

counters for flows that exist in the flow table. However, miss-
ing expired flows can result in suboptimal performance for
applications. To demonstrate this, we implement a simple en-
tropy-based DDoS detection algorithm, and compare the detec-
tion accuracy with and without expired flow entries, respec-
tively.

We use Mininet [6] to emulate a topology with one switch
and four hosts, and generate background traffic and DDoS traf-
fic with Scapy. We let the DDoS attack begin at the 30th sec-
ond, which lasts for 30 seconds. At the same time, we let the
controller send a flow_statistics_request message every 2 sec-
onds. After retrieving flow counters, we calculate the entropy
for destination IP (Dst_IP) and destination port (Dst_Port). The
idle_timeout of flow entries is set to 10 seconds, and we collect
expired flow entries by monitoring the flow removal messages
sent by switches. The experiment lasts for 2 minutes. Fig. 2
reports the entropy of Dst_IP and Dst_Port when no expired
entries, 5 seconds of expired entries, and 10 seconds of expired
entries are used, respectively. Note the average entropy value
of Dst_Port for the three cases is 1.633, 0.844 and 0.753, re-
spectively. We can see that the detection accuracy increases
when more expired flow entries are added, demonstrating the
importance of expired flow entries.

Fig. 2. The entropy for Dst_IP and Dst_Port, when using (1) no expired en-
tries, (2) 5 seconds of expired entries, and (3) 10 seconds of expired entries.

B. The Overhead of Statistics Query
In OpenFlow, when applications request flow statistics,

switches should return the counters of all queried flows. This
will inevitably impose overhead on switches. In the following,
we will use both emulated network and real testbed to numeri-
cally study how flow statistics queries affect the performance
of switches.

Fig. 1(a) shows the testbed, which consists of a Pica8 P-
3297 switch and three hosts [15]. We let client 1 send packets
with random source IP addresses to the server, in order to
simulate background flow arrivals. At the same time, we let the
client 2 send 100 packets with random source IP addresses to

the server, and let the server count the number of packets re-
ceived from the client 2 with tcpdump, denoted by #Rev. Then,
we vary the background flow arrival rate, and calculate the
flow failure rate as 1 - #Rev/100. Fig. 1(b) reports the results,
showing that the failure ratio increases with background flow
arrival rate, especially when the statistics query frequency is
high. This means that statistics query indeed affects the per-
formance of switches in setting up new flows. We do the same
experiment on an emulated network using Mininet, running on
a Linux server with an Intel Core i5-4590 CPU@3.30GHz and
16 GB memory. The trend is similar with that of the testbed.

Then, we vary the number of queried flow entries and
measure the CPU load for both Pica8 and OVS using the Pi-
ca8’s built-in monitoring utility and the Linux top command,
respectively. Fig. 1(c) reports the relationship between the
switch’s CPU load and the number of flow entries, for Pica8
and OVS. Not surprisingly, the CPU load increases when more
flow entries are queried for both Pica8 and OVS.

III. DESIGN
In this section, we first give an overview of CounterMap

architecture, then present the syntax of the flow statistics query
language, and finally show how to use CounterMap with ex-
amples.

A. System Architecture
As shown in Fig. 3, CounterMap adds four modules into

the vanilla controller. The Counter Polling Scheduler strategi-
cally queries counters from switches periodically or on demand,
and puts the counters into the Counter Info Base (CIB). The
Counter Query Compiler parses the queries from APPs, and
then either retrieves flow statistics from the CIB, or requests
the counters directly from switches by invoking the Counter
Polling Scheduler. The Expired Flow Tracker monitors expired
flows and stores their counters into CIB for later queries.

Counter Query Compiler

Anomaly
Detector

Heavy Hitter
Detector

OD Matrix
Estimator

Polling
request

Counter Polling Scheduler

OpenFlow API

Flow
statistics

Counter
Info Base

...

Expired Flow Tracker

Fig. 3. System Architecture. Shaded parts belong to CounterMap.

Client 1

Pica 8 P-3297 Switch
Client 2 Server

Floodlight
Controller

Fig. 1. Experiments showing the counter polling overhead. (a) Topology; (b) The packet loss rate trend under different flow arrival rate and request rate ; (c)
the CPU load of pica8 and OVS as the increase of flow entry.

B. CounterMap Query Language
The design of CounterMap query language is driven by

two goals: first, it should be expressive enough to support var-
ious SDN applications that require flow statistics; second, it
should be intuitive enough for programmers to use. At a high
level, the query language lets programmers write SQL-like
clauses to select counters from the CIB. The queries support
features like filtering, grouping, and computing, which will be
discussed in details below. Table I shows the syntax of the
query language.

A SELECT (* | m | c | f(m | c)) clause specifies the re-
turned results, including the matching fields (e.g., TCP-five
tuple) and counters (i.e., packet count and byte count) of flow
entries. In addition, SELECT also supports simple functions
like MAX, MIN, SUM, AVG, and COUNT over the returned
results.

A FROM (normal | expired | full | dp) clause specifies the
data sources to query from. Currently, four data sources are
supported: normal stands for all active flows, expired stands
for expired flows, and full stands for their combination. These
three data sources are all maintained by the CIB. Finally, dp
means querying the data plane directly, rather than from CIB.

A WHERE(pred) clause filters the results according to the
predicates pred. Predicates can be src-ip =
“10.0.0.1”,dst-port!=8080, packetCount >=
80, etc., or can be constructed using logical operators like
conjunction (and), disjunction (or), and negation (not). For
example, where not (src-ip = “10.0.0.1” and
dst-ip = “10.1.0.0/24”) filters out entries of flows
sent from IP address 10.0.0.1 to IP addresses 10.1.0.0/24.

A GROUPBY (m1[,m2,…,mn] | time) clause splits the que-
ried results into subsets, according to matching fields or re-
trieval time. For example, suppose there are two source IP
addresses 10.0.0.1 and 10.0.0.2, and two destination IP ad-
dresses 10.0.0.3 and 10.0.0.4. Then, the query SELECT
SUM(packetCount) FROM normal GROUPBY src-
ip, dst-ip divides the selected packet counters into four
subsets (each for a source-destination IP pair), and returns the
sum of packet count for each subset.

A TIMERANGE (time1,time2 [,step]) clause specifies the
time range within which counters should be retrieved, with
querying period specified by step. Note that time2 can be
wildcard “*” to continuously retrieve the counters until the
query is stopped. An application can specify the querying in-
terval by setting step in unit of second. For example,
TIMERANGE (10:00:00, 10:10:00, 30) returns the results at
10:00:00, 10:00:30, 10:01:00, etc.

A SAMPLE(ratio) clause can be used to sample entries
from the CIB, in order to save query cost. For example, if the
parameter ratio is set to 0.6, then 60% of all matched flows
will be returned.

A LIMIT(begin[:end | -1]) clause returns flow entries from
begin to end rows, ranked by storage time and collection order.
Similarly, LIMIT (begin) returns flow entries from the 1st to
begin row and LIMIT (begin, -1) returns the begin to the last
row.

CounterMap also provides several commands to execute
queries. An APP can execute a query using Execute (que-
ry,frequency,times). For example, Execute (query,10s,5) will
query the database every 10s and execute 5 times in total. An

APP can also use the Adjust(statsCycle) to flexibly modify the
statistics query period.

C. Using CounterMap
To show how CounterMap works, we use the above query

language to implement three representative applications, in-
cluding DDoS attack detection, heavy hitter identification, and
traffic matrix estimation. We assume that the time range of
counters stored in the current CIB is [08:00:00,12:00:00], and
the statistics request period is set to 5 seconds.

TABLE I. COUNTERMAP QUERY SYNTAX

Queries

Matches
Counters
Functions
Predicates

q

m
c
f
pred

:: = SELECT (* | m | c | f(m | c))
FROM (normal | expired | full | dp)
WHERE (pred)
GROUPBY (m1[,m2,…,mn] | time)
TIMERANGE (time1,time2 [,step])
SAMPLE (ratio)
LIMIT (begin[:end | -1])

:: = src-ip | dst-ip | src-port | dst-port | proto
:: = packetCount | byteCount
:: = MAX | MIN | SUM | AVG | COUNT
:: = field > value | field < value

| field >= value | field <= value
| field = value | field != value
| pred and pred | pred or pred | not pred
| pred (pred) | (pred) pred
| field / mask

Distributed Denial of Service (DDoS) Detection. We
consider a DDoS attack where a large number of packets with
different source IP addresses and port numbers arrive at the
same destination. For detection, we choose the entropy-based
method which utilizes the Dst_IP and Dst_Port information of
the flow entry [10]. The detection method proceeds as follows.

First, we query all flows, grouped by their storage time,
and count the total number of items in each group. The re-
sults will be a vector, denoted by Total, where Total[t] cor-
responds to the time instance t.

SELECT time,COUNT(time)
FROM full
GROUPBY time
TIMERANGE (11:30:00,12:00:00)
Second, we query all flows, grouped by their time and

Dst_IP, and count the total number of items in each group.
The results will be a matrix DstIP, where DstIP[t][i] is the
number of occurrence of the ith destination IP at time t.

SELECT time, dst-ip, COUNT (dst-ip)
FROM full
GROUPBY time, dst-ip
TIMERANGE(11:30:00,12:00:00)
Third, we compute the probability p[t][i] for the ith

Dst_IP at time t as p[t][i]=DstIP[t][i]/Total[i]. Then, we can
compute the entropy of destination IP as:

()
21

[] [][]log [][]n t

i
Entropy t p t i p t i (1)

Similarly, we can compute the entropy of destination port.
If there is significant decrease in either DstIP entropy or
DstPort entropy, we should suspect that there may be DDos

attack. Then, we can query more fine-grained flow statistics by
adjusting the statsCycle to smaller values with the command
Adjust(statsCycle), and examine information from 12:00:00 to
12:10:00 by calling Execute (query,1s,600), where query will
fetch data from full with TIMERANGE (12:00:00,*).

Comparatively, if we implement the above detection meth-
od with OpenFlow, we need to classify the returned flows into
groups, and count the number of items in each group ourselves.
This requires more lines of codes, and is thus more error-prone.
In addition, the programmer cannot look back into a previous
period, and retrieve the counters.

Heavy Hitter Identification. Heavy hitter refers to a small
number of flows that constitute a majority of bytes or packets.
For example, suppose we are interested in which (dst-ip,dst-
port) pair contributes most to the total number of packets be-
tween 11am to 12am, we can make the following query:

SELECT time,dst-ip,dst-port,SUM(packetCount)
FROM normal
GROUPBY time,dst-ip,dst-port
TIMERANGE (11:00:00,12:00:00)
After obtaining the results, we can compare them with a

given threshold, in order to identify the heavy hitter. Suppose
the set of flow with destination IP 10.0.0.1 and port 21 is iden-
tified as a heavy hitter, we can look at its detailed information
by making the following query:

SELECT *
FROM full
WHERE dst-ip=10.0.0.1 and dst-port=21
TIMERANGE (11:00:00,12:00:00)
Traffic Matrix Estimation. A traffic matrix can reveal the

volume of traffic between different origin-destination pairs in a
network. To build the traffic matrix from 8am to 9am, we can
make the following query:

SELECT time,src-ip,dst-ip,SUM(byteCount)
FROM full
GROUPBY time, src-ip,dst-ip
TIMERANGE (8:00:00,9:00:00)

D. Optimization
According to the experiment results in section II, the coun-

ter polling process imposes a non-negligible overhead on
switches. Thus, we should optimize the counter polling strategy
in order to reduce such overhead. In the following, we will
present a preliminary step, and leave full optimization as future
work.

Let F and S be the set of flows and switches, respectively,
with |F|=m and |S|=n. Let Am×n be a Boolean matrix: Ai,j=1 if
flow i traverses switch j, and Ai,j=0 otherwise. Let Cj be the set
of flows that traverse switch j. Let I be a vector defined as Ij=1
if switch j is selected for polling, and Ij =0 otherwise. Let Lj be
the processing capacity of the switch j.

We assume that the general statistics querying cost (either
communication or computation cost) of a switch j can be de-
composed into two parts: a constant cost Bj, and a variable cost
Rj|Cj|, where Rj is a coefficient. Take the communication cost
for example, a flow_statistics_reply message has a minimum
length of 82 bytes, and a variable length of 56 bytes per flow
entry, according to OpenFlow 1.3. Then the counter polling
problem can be formulated as the following mixed integer pro-
gram:

 ,

min (| |)

. . 1,

 (| |) ,

 {0,1}

j j j jj S

i j jj S

j j j j j

j

B R C I

s t A I i F

B R C I L j S

I

 (2)

This is a typical minimum set cover problem, which is NP-
hard. In the following, we propose a simple heuristic algorithm
to find an approximate solution. Algorithm 1 summarizes the
process of Covered Flow Selection (CFS) algorithm always
selects the switch which is the most cost-effective in each
round. Specifically, we define the weight of switch j as:

 | |
| |

j

j j j
j

C
B R C

w (3)

, where
j jC C is the set of rules that have not been covered

by any switch already selected.

Algorithm 1 Covered Flow Selection Algorithm
Input: F: the set of all flows, S: the set of all switches, Cj: the
flows that traverse switch j.
Output: SW: the switches that have been selected for polling

1: SW ← {} // set of selected switches
2: CF ← {} // set of flows covered by selected switches
3: C'j ← Cj, j S // flows that traverse switch j but have not

been covered by any selected switch
4: while CF != F do
5: compute ws using Eq.(3) for each switch s S \ SW
6: find a switch s S with the maximal weight, while satis-

fying | |s s s sB R C L
 7: SW ←SW {s}, CF← CF Cs

8: C'j ← C'j \ Cs, j S \ SW
9: end while

10: return SW

IV. IMPLEMENTATION AND EVALUATION

A. Implementation
We prototype CounterMap based on Floodlight. For Coun-

ter Information Base, we use Redis [12], an in-memory key-
value store that supports various data structures such as hashes,
lists and set. We implement the Counter Query Compiler with
a parser that parses queries and an execution unit that interacts
with the Redis data store. The execution unit evaluates clauses
in the order of FROM, SAMPLE, TIMERANGE, WHERE,
GROUPBY, LIMIT, and SELECT. To speed up the execution,
we use the LUA script language provided by Redis since ver-
sion 2.6.0.

B. Evaluation
In the following, we verify the effectiveness of the CFS al-

gorithm with experiments.
Setup. We use Mininet to emulate different network topologies,
including FatTree, BCube, DCell, Stanford campus backbone
network, and China Education and Research NETwork
(CERNET), as shown in Table II. We run Mininet on a Linux
server with an Intel Core i5-4590 CPU@3.30GHz and 16 GB

memory. In our experiment, we generate flows with pingall.
For comparison, we use both the vanilla and the CounterMap-
enabled Floodlight controller. The controller sends flow statis-
tics requests every 2 seconds, and the idle_timeout of flow en-
tries is set to 15 seconds.
Results. As shown in Table II, CFS reduces the number of
polled switches by 29%-55%, and the number of queried en-
tries by 55%-77%. Since cross-switch redundancy is not a
main focus of this paper, we have not fully optimized CFS.
While the reduction rate is already acceptable.

TABLE II. COMPARISON RESULTS OF CFS AND OPENFLOW FOR
DIFFERENT TOPOLOGIES

topologies size #polled switches #queried entries
OF CFS ratio OF CFS ratio

FatTree(4) 20 20 9 55.0% 10226 3526 65.5%
FatTree(6) 45 17 12 29.4% 10934 2473 77.4
BCube(1,4) 24 19 10 47.4% 9835 3232 67.1%
BCube(1,6) 48 20 10 50.0% 9033 2366 73.8%
DCell(1,4) 25 19 10 47.4% 9557 2715 71.6%
DCell(1,6) 49 21 14 33.3% 9609 4289 55.4%
Stanford 26 20 12 40.0% 8566 3296 61.5%
CERNET 41 13 9 30.7% 8830 3747 57.6%

V. RELATED WORKS
There are many traditional flow collection tools like Net-

Flow [1], sFlow [2], Sniffer [3] and SNMP [4]. With the ad-
vance of SDN, some statistics collection schemes have been
proposed. Here, we roughly classify them into two categories,
flow collection methods and switch polling strategies.

There are some flow collection methods based on Open-
Flow, For example, [8] presents a lightweight DDoS detection
method whose flow collection module periodically requests
flow entries from all flow tables of switches. Considering the
scalability and cost of OpenFlow statistics collection, [10]
combines OpenFlow and sFlow to detect and mitigate the
anomaly detection, which separates the data collection process
from the SDN control plane by the employment of sFlow.
However, packet sampling can lower detection accuracy. In
order to reduce flow monitoring cost, FlowSense [11] propos-
es a push-based passive flow monitoring approach, which lis-
tens for PacketIn and FlowRemoved messages to compute the
link utilization between switches. PayLess [9] provides a flex-
ible RESTful API at different aggregation levels for monitor-
ing applications and introduces a flow statistics algorithm with
low-overhead and high-accuracy. However, PayLess neglects
the influence of expired flow entries on monitoring accuracy.

Switch scheduling strategy is essential to reduce the que-
rying cost. OpenTM [13] proposes several algorithms for de-
ciding which switches to query. However, the extra cost is
unneglectable when there are large active flows and it is de-
signed only for the traffic matrix application. FlowCover [14]
formulates the communication cost of flow statistics request
and reply as a weighted set cover problem and presents a heu-
ristic switch polling scheme to reduce the cost. However,
FlowCover only considers communication cost, while neglect-
ing other important aspects like switch load.

Some SDN programming languages like Frenetic [16] and
Pyretic [17] also support flow statistics queries. Different from

CounterMap, they directly translate the queries into OpenFlow
messages. Therefore, they can only return the counters of exist-
ing flows, while cannot provide historical statistics, which we
have shown are also important for SDN applications.

VI. CONCLUSION AND FUTURE WORK
This paper presented CounterMap, a generic flow statistics

collection and query platform for SDN applications. Counter-
Map actively polls counters of existing flows from OpenFlow
switches, tracks counters of expired flows, and combines them
to form a full map of counters across time. Built atop in-
memory data store, CounterMap offers a SQL-Like query lan-
guage that can be easily used by various applications. We de-
signed a switch polling algorithm, and showed that it could
reduce the overhead on the data plane. Our future work in-
cludes (1) improving the expressiveness of the query language;
(2) further reducing the data plane overhead with more intelli-
gent counter collection methods (e.g., wildcard-based).
Acknowledgement. This work is supported by the National
Key Research and Development Program of China
(2016YFB0800101), the National Natural Science Foundation
of China (61402357, 61672425), and the Microsoft Research
Asia Collaborative Research Program.

REFERENCES
[1] Cisco NetFlow site reference, http://www.cisco.com/en/US/products

/ps6601/products_white _paper0900aecd80406232.shtml.
[2] sFlow.org Forum, 2012. [Online]. Available: http://www. sflow.org/
[3] Network Sniffer, [Online]. Available: http://www.network-sniffer.com/.
[4] SNMPv3 White Paper, http://www.snmp.com/snmpv3/v3white.shtml.
[5] Openflow switch specification 1.0.0, https://www.opennetworking.org/

images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.0.0.pdf.

[6] Mininet, [Online]. Available: http://mininet.org/.
[7] Y. Zhang, “An adaptive flow counting method for anomaly detection in

sdn,” in Proceedings of ACM CoNEXT, 2013, pp. 25–30.
[8] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack

detection using NOX/OpenFlow,” in Proceedings of IEEE LCN, 2010.
[9] S. Chowdhury, M. Bari, R. Ahmed, and R. Boutaba, “Payless: A low

cost network monitoring framework for software defined networks,” in
Proceedings of IEEE NOMS, 2014, pp. 1–9.

[10] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V.
Maglaris, “Combining OpenFlow and sFlow for an effective and scalable
anomaly detection and mitigation mechanism on SDN environments,”
Computer Networks, vol. 67, April 2014, pp. 122–136.

[11] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.
Madhyastha, “FlowSense: Monitoring network utilization with zero
measurement cost,” in Proceedings of PAM, 2013, pp. 31–41.

[12] Redis, [Online]. Available: https://redis.io/, 2007.
[13] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic matrix

estimator for OpenFlow networks,” in Proceedings of PAM, 2010.
[14] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “FlowCover: Low-cost flow

monitoring scheme in software defined networks,” in Proceedings of
IEEE GLOBECOM, 2014, pp. 1956–1961.

[15] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen. “Scotch:
elastically scaling up sdn control-plane using vswitch based overlay,” in
Proceedings of ACM CoNEXT, 2014, pp. 403–414.

[16] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A.
Story, and D. Walker, “Frenetic: A network programming language,” in
Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming, 2011, pp. 279–291.

[17] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN programming with pyretic, ” USENIX Mag., vol. 38, no. 5, 2013.

