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ABSTRACT
Software defined networks provide new opportunities for automat-
ing the process of network debugging. Many tools have been de-
veloped to verify the correctness of network configurations on the
control plane. However, due to software bugs and hardware faults
of switches, the correctness of control plane may not readily trans-
late into that of data plane. To bridge this gap, we present VeriDP,
which can monitor “whether actual forwarding behaviors are com-
plying with network configurations”. Given that policies are well-
configured, operators can leverage VeriDP to monitor the correct-
ness of the network data plane. In a nutshell, VeriDP lets switches
tag packets that they forward, and report tags together with header-
s to the verification server before the packets leave the network.
The verification server pre-computes all header-to-tag mappings
based on the configuration, and checks whether the reported tags
agree with the mappings. We prototype VeriDP with both software
and hardware OpenFlow switches, and use emulation to show that
VeriDP can detect common data plane fault including black holes
and access violations, with a minimal impact on the data plane.

1. INTRODUCTION
In traditional networks, when a fault (e.g., routing black hole)

occurs in the network, it will be firstly noticed by some end hosts
that may become unreachable. Then, customers complain and issue
tickets to the network operators, who use simple tools like ping and
traceroute to localize the fault and resolve it. The above process
lacks automation, and inevitably incurs a long service downtime.

Since networks know every single detail of a packet’s lifetime,
why not let themselves raise alters to operators, instead of end
hosts or customers? There are many potential benefits by letting
networks take an active role in network monitoring and debug-
ging. First, by automatically raising alters, operators can resolve
the faults more efficiently, thereby reducing the network downtime.
Second, some faults (e.g., access violation) that may not be explic-
itly noticed by any end hosts can be captured by networks. Finally,
networks can provide more useful information for the operators to
pinpoint the fault location.

One reason that networks keep passive in monitoring and debug-
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ging may be the distributed nature of networks: no single switch
can reason about the global policies in traditional networks. For
example, consider a packet is dropped, the switch does not know
whether it is due to faults or access control policies. As another
example, if a packet is received twice by a switch, it is a fault of
loop in most cases, while it also can happen with a normal policy
in flexible middle-box traversal scenarios [8].

We observe that networks have the potential to take a more ac-
tive role in the monitoring in the context of SDN. First, the SDN
controller knows the global network policy, i.e., how the data plane
should behave, and there are many tools to guarantee the correct-
ness of the network policy, either off-line [19, 15, 26] or on-the-
fly [16, 14, 24]. Secondly, switches can record and report pack-
et forwarding behaviors to the controller, through standard south
bound interfaces (e.g., OpenFlow [20]). By comparing the packet
forwarding behaviors to the global network policy, the controller is
in a good position to detect faults of the data plane.

Previous efforts on automatic network debugging are mostly fo-
cused on checking correctness of network configurations [19, 15,
16, 14, 24, 26]. However, even the controller and configurations are
correct, the data plane may still experience faults due to switch soft-
ware bugs [17], hardware failures [25], or malicious attacks [22].
Existing data plane verification tools either solely check reachabil-
ity and thus miss path information [25], use probe packets that can
be poor indicators of real traffic [25, 6], require a large number of
flow rules [27, 21], depend on specific data center topology [23], or
incur too much data plane traffic [9, 10].

Noted of the above limitations, we propose VeriDP, a new tool
that can monitor the policy compliance of SDN data plane. In con-
trast to path tracers that solely rely on switches to imprint packet
paths, VeriDP combines it with the network policies/configurations
on the control plane. This combination delivers the following ben-
efits. (1) With the network policy at hand, VeriDP can distinguish
packet drops due to access violation from black holes, and strategic
multi-traversals [8] from infinite loops. (2) It is not necessary to
optimize the path encoding method so as to fit the path info into the
limited header space as in [27, 21, 23], since the controller already
knows the correct path, and the only task is to judge whether the
path taken by packet is the same with it.

The basic idea of VeriDP is quite simple. The controller pre-
compute a path table which records all mappings from packet head-
ers to forwarding paths. When a packet enters the network, the en-
try switch decides whether to mark it according to some sampling
strategies. If a packet is marked, each switch en route tags it with
the forwarding information. Before a marked packet leaves the net-
work, the exit switch reports its header and tag to the controller.
The controller verifies whether the information encoded in the tag



Flow Rules at S1:

R1 in_port=1: FWD 2
R2 in_port=3: FWD 2
R3 dst_ip=10.0.1.1: FWD 1
R4 dst_ip=10.0.2.1: FWD 3
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Figure 1: Middlebox traversal example. The security policy of
H1→Middlebox→ H2 is violated.

is the same with the path that the packet should take according to
the path table.

Indeed, packet tagging is not a new idea for tracing packet trajec-
tories [27, 21, 23]. VeriDP differs from them in that it is not trying
to encode path information into packet headers for the receivers
to decode it. Rather, VeriDP uses control-plane policies to “infer”
paths, and use packet tags to “test” the correctness of real paths.
The advantage is that VeriDP does not need complicated encoding
methods or a large number of flow entries, in order to compress
path info into limited header space.

Our contribution is two-fold:

• We propose VeriDP, a new tool to monitor the policy com-
pliance of SDN data plane, i.e., “whether packet forwarding
behaviors agree with the policy configured by the controller”.
• We implement VeriDP on software- and hardware-based data

plane, and demonstrate that it can detect common faults like
black holes, access violation, loops, while incurring minimal
overhead on the data plane.

In the rest of this paper, we will first give our notion of poli-
cy compliance (§2), and then present the design of VeriDP (§3).
We continue to test the function of VeriDP, and evaluate its perfor-
mance (§4). After discussing some related work (§5), we conclude
the paper (§6).

2. INTRODUCING POLICY COMPLIANCE

2.1 Observations
Before introducing our notion of policy compliance, we first e-

laborate the fact that verifying the policy compliance of data plane
necessitates checking packet paths with real traffic.
Path Check Is Important. Pairwise reachability is a key invari-
ant for a network. However, only checking reachability is not e-
nough to reveal data plane faults. Consider an example of middle-
box traversal. As shown in Figure 1, rules at switch S1 indicate
that traffic from the client H1 to the server H2 must go through
the middlebox. To test all these rules based on reachability, we can
send two probe packets H1 → H2 and H2 → H1. They will
follow the path of H1(H2) → S1 → M → S1 → H2(H1),
respectively, and thus trigger all rules in this network. Now, con-
sider that the high-priority rules R1 and/or R2 fail, then the probe
packets will take the path of H1(H2) → S1 → H2(H1) in-
stead. However, probe packets will still be received as normal, thus
missing the faults. This example shows that to monitor the policy
compliance of data plane, we need to check the paths of packets,
instead of only checking pairwise reachability.
Real Packets Are Necessary. Verification using probe packets can
only verify that the forwarding paths of probe packets agree with
the rule. It does not necessarily mean the forwarding paths of real
traffic do. For example, consider an ACL rule that only permits
HTTP traffic from IP address 10.0.0.1:

match: src_ip = 10.0.0.1, dst_port = 80, action=“ALLOW”

A probe packet with source address 10.0.0.1 and destination port
80 can trigger this rule. However, even the packet is successfully
received, it may not mean the rule is correctly configured at the
switch. For example, consider the above rule is prioritized by a
ill-inserted rule:

match: src_ip = 10.0.0.1, dst_port = ∗, action=“ALLOW”

The probe packet can still be received. However, Non-HTTP traf-
fic, e.g., SSH, from 10.0.0.1 will also be allowed, violating the
controller’s policy. This is because the probe packets cannot ex-
haust all possibilities in the header space in order to detect such
ill-inserted rules. Thus, to monitor the policy compliance of data
plane, we still need to inspect the real packets.

2.2 Policy Compliance Model
Notations. A port p is defined as a pair ⟨SwitchID, PortID⟩,
where PortID ∈ {1, 2, 3, . . . , n,⊥} is the local port ID, and ⊥
represents the dropping port. A header h is defined as a point in the
H = {0, 1}L space. A header set H is defined as a subset h ⊂ H.
A flow f is defined as a pair ⟨h, p⟩, where h is the header of the
flow, and p is the port where the flow enters the network. A rule
r is defined as a tuple ⟨p1, H, p2⟩, meaning that packets received
from port p1 with header h ∈ H should be forwarded to port p2.
For a dropping rule, p2 = ⟨SwitchID,⊥⟩. A link can be seen as a
special kind of rule ⟨p1,H, p2⟩, meaning that packets forwarded to
port p1 of one switch will be received at port p2 of another switch.
Packet Path. When a packet pkt of flow f is received at port
pin1 of S1, S1 looks up in its flow table. When the first rule r =
⟨pin1 , H, pout1 ⟩ satisfying h ∈ H is found, S1 forwards pkt to port
pout1 , and applies the link rules so that pkt is received at port pin2
of another switch S2. This process continues until pkt reaches an
output port poutn of switch Sn, such that either poutn is connect-
ed to an end host, or it is a dropping port. The path of flow f
is defined as the sequence of traversed ports, i.e., Path(R, f) =
⟨pin1 , pout1 , pin2 , . . . , poutn ⟩.

Let R be the set of all rules in the network (including the link
rules), andR′ be the counterpart that is actually enforced by switch-
es. The policy compliance of data plane is defined as follows.

DEFINITION 1. The data plane is said to be policy compliant
iff Path(R′, f) = Path(R, f) for every flow f in the network,
where R and R′ are the set of rules configured by the controller
and enforced by switches, respectively.

VeriDP is aimed to verify the policy compliance of the SDN data
plane according to the above definition. Note that there are cases
that R′ ̸= R but Path(R′, f) = Path(R, f) for all f . We do
not consider it as a fault since the forwarding behaviors remain
the same. Specifically, Definition 1 allows us to detect common
faults on the data plane, including black holes, access violation,
and loops:
Black Holes. In this case, there exists a flow f , such that Path(R′, f) =
⟨pin1 , pout1 , pin2 , . . . , pinm ,⊥⟩, meaning that the flow is dropped by a
switch that receives f from port pinm . Suppose f is destined to an
host connected to port poutn , then we should have Path(R, f) =
⟨pin1 , pout1 , pin2 , . . . , pinn , poutn ⟩ ̸= Path(R, f).
Access Violation. In this case, there exists a flow f , such that
Path(R′, f) = ⟨pin1 , pout1 , pin2 , . . . , pinm , poutm ⟩, where poutm is con-
nected to an end host that f is forbidden to reach. Then, we should
have Path(R, f) = ⟨pin1 , pout1 , pin2 , . . . , pinn ,⊥⟩, where the switch
with pinn should drop f . Obviously, Path(R′, f) ̸= Path(R, f).
Loops. In this case, there exists a flow f , such that the length
of Path(R′, f) exceeds the maximum TTL, say MaxTTL. On
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Figure 2: System architecture. The shaded components belong
to VeriDP; those within the dashed rectangle are the compo-
nents that VeriDP monitors.

the other hands, the length of Path(R, f) should be less than
MaxTTL, and thus Path(R′, f) ̸= Path(R, f).

3. DESIGN
As shown in Figure 2, VeriDP consists of two major compo-

nents: the VeriDP pipeline on the data path, the VeriDP server on
the control plane. The pipeline is responsible for sampling, tag-
ging, reporting packets to the VeriDP server. The server intercepts
the bidirectional OpenFlow messages exchanged between the con-
troller and switches, in order to construct the path table, which
records all header-to-tag mappings. With the path table, the server
verifies reported packets sent from switches. The dashed rectangle
represents the domain that VeriDP monitors, i.e., VeriDP is expect-
ed to detect the faults caused by the components inside the domain.
The monitor domain includes: (1) the OpenFlow agent that termi-
nates the OpenFlow channel, and (2) the OpenFlow pipeline that
manages the hardware flow table and forwards packets through ta-
ble lookups.

3.1 VeriDP Pipeline
The VeriDP pipeline is responsible for generating tags for pack-

ets at entry switches, updating tags for packets at core switches, and
reporting packet headers and tags to the controller at exit switches.
The VeriDP pipeline is implemented in a switch’s fast path, separat-
ed from the OpenFlow pipeline. The reason is avoid faults caused
by OF flow tables to propagate into the tagging module. Since a
typical switch can contain a cascade of flow tables, each of which
may hold thousands flow entries, flow entries used for tagging may
be override by other rules, replaced when flow table is full, and
even incorrectly modified/deleted by applications.

The VeriDP pipeline processing is shown in Algorithm 1. The
entry switch initializes the packet tag to zero, and the ttl to the
maximum path length (Line 1-3). Each switch updates the tag as:

tag = tag ⊕ hash(inport||switchID||output) (1)

, and decrements the ttl value by one (Line 4-5). When the pack-
et is output to an edge port connected with an end host, output
to the dropping port ⊥, or its ttl hits zero, the switch sends a tag
report to the server (Line 6-7). Here, a tag report is a 4-tuple
⟨inport, outport, header, tag⟩, where inport/outport are the en-
try/exit port of the packet; header is a portion of packet header

Algorithm 1: Tag(S, x, y, p)
Input: S: the switch ID; x/y: the local input/output port ID of packet

p, which is received from the OpenFlow pipeline.
1 if ⟨S, x⟩ is an edge port then
2 p.tag ← 0; // initialize the tag
3 p.ttl← MAX_PATH_LENGTH; // initialize the ttl

4 p.tag ← p.tag ⊕ hash(x||S||y); // update the tag
5 p.ttl← p.ttl − 1; // decrement the ttl
6 if ⟨S, y⟩ is an edge port or y = ⊥ or p.ttl = 0 then
7 Report(inport, ⟨S, y⟩, p.header, p.tag); // send report

H1 10.0.1.1

H3 10.0.2.1
H2 10.0.1.2

1 dst_ip=10.0.1.1: port 1

2 dst_ip=10.0.1.2: port 2

3 dst_port=22: port 3

4 dst_ip=10.0.2/24: port 4

  8 src_ip=10.0.1.2: drop

  9 dst_ip=10.0.2.1: port 2

10 dst_ip=10.0.1/24: port 1

5 in_port=1: port 3   

6 dst_ip=10.0.1/24: port 1

7 dst_ip=10.0.2/24: port 2
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Figure 3: A simple example for path table construction. The
network consists of three switches and a total of 10 rules.

(e.g., TCP 5-tuple); tag is the tag of the packet. One thing to note
is that switches should send tag reports for dropped and looped
packets. This is necessary to ensure the visibility of verification
server into black holes and loops.

3.2 VeriDP Server
The VeriDP server is responsible for parsing and verifying tag

reports sent by switches. Central to the VeriDP server is the path
table, which maps a pair of ⟨inport, outport⟩ a list of paths that
enter the network at inport and exit at outport. Each path is a-
gain a pair of ⟨headers, tag⟩, where headers is a set of headers
allowed for the path, and tag is the tag represents the path.

For a concrete example, consider the toy network in Figure 3.
Rule 3 redirects all SSH traffic to S2, and Rule 4 forwards all other
packets towards 10.0.2/24 to S3. Rule 5 directs all traffic from
port 1 to the middlebox. Rule 8 at switch S3 drops all traffic from
H2. Other rules are plain forwarding rules ensuring connectivity.
Table 1 is a part of the path table for this topology.

3.2.1 Representing the Header Set
A problem for constructing path table is how to represent header

sets. A straightforward way is to use wildcard expressions, just as
in Header Space Analysis [15] and ATPG [25]. However, wildcard
expressions are suitable for representing suffix, while very ineffi-
cient for representing arbitrary header set. For example, the header
set for dst_port ̸= 22 in the second row of Table 1 is a union of
16 wildcard expressions. In addition, wildcard expressions have a
poor support of set operation like union, conjunction, and comple-
ment. For a typical network of tens of switches, each of which has
thousands of flow rules, a huge number of wildcard expressions are
needed to represent all the possible packet sets. According to [13],
characterizing the Stanford backbone network (16 switches) needs
652 million wildcard expressions.

Inspired by the previous work [24], we decide to use the Binary
Decision Diagrams (BDDs) [7] to represent header sets. BDD is
an efficient data structure for Boolean expressions, and has a better



Table 1: Part of the path table for Figure 3. [·] represents the hash function.
inport outport headers tag

⟨S1, 1⟩ ⟨S3, 2⟩
src_ip = 10.0.1.1, dst_ip = 10.0.2.1, dst_port = 22 [1||S1||3]⊕ [1||S2||3]⊕ [3||S2||2]⊕ [1||S3||2]
src_ip = 10.0.1.1, dst_ip = 10.0.2.1, dst_port ̸= 22 [1||S1||4]⊕ [3||S3||2]

⟨S1, 2⟩ ⟨S3,⊥⟩
src_ip = 10.0.1.2, dst_ip = 10.0.2.1, dst_port = 22 [2||S1||3]⊕ [1||S2||3]⊕ [2||S2||2]⊕ [1||S3||⊥]
src_ip = 10.0.1.2, dst_ip = 10.0.2.1, dst_port ̸= 22 [2||S1||4]⊕ [3||S3||⊥]

Algorithm 2: Traverse(inport, ⟨S, x⟩,H, t)
Input: inport: the input port of the header; ⟨S, x⟩: the currently

visited port; H: the header set; t: the tag
1 H̄ ← H; // headers of dropped packets

2 H ← H ∧ PA
x ; // ACL predicate of port x

3 foreach port y of switch S do
4 Ĥ = H ∧ PF

y // FWD predicate of port y

5 if Ĥ ̸= ∅ then
6 H ← H − Ĥ;
7 Ĥ = Ĥ ∧ PA

y // ACL predicate of port y

8 if Ĥ ̸= ∅ then
9 H̄ ← H̄ − Ĥ;

10 t← t⊕ hash(x||S||y) // update the tag
11 if ⟨S, y⟩ is an edge port then
12 Insert(inport, ⟨S, y⟩, Ĥ, t);
13 else
14 Traverse(inport, Link(⟨S, y⟩), Ĥ, t);

15 t← t⊕ hash(x||S||⊥);
16 Insert(inport, ⟨S,⊥⟩, H̄, t);

support of set operations. With BDDs, we can expect to signifi-
cantly reduce the size of path table.

3.2.2 Constructing the Path Table
We show how to construct the path table from a configuration

similar to the Stanford backbone network configuration [3]. For
simplicity, we assume the configuration files have already been
transformed into a set of predicates using the method in [24]. For
each input port x, there is an ACL predicate PA

x , meaning that
packets that satisfy PA

x are allowed to input from port x. Similarly,
for each output port y, there is an ACL predicate PA

y , meaning that
packets that satisfy PA

y are allowed to output to port y. Finally,
each outport y also has a FWD (forwarding) predicate PF

y which
guard which packets will be forwarded to port y.

Algorithm 2 summarizes the process of constructing path table
from the above predicates. For each edge port connected with end
hosts, we inject a header set H initialized to all-headers (i.e., a
BDD of True), and a tag t initialized to zero. When the header H
is received at a port ⟨S, x⟩, the algorithm intersect H with the ACL
predict of port x (Line 2), and then iteratively intersect the resultant
header set Ĥ with the forwarding rules of all output ports (Line 3-
4). For each port y that intersection is non-empty, the header set Ĥ
is intersected further with the ACL rules of y (Line 5-7). If Ĥ is
still non-empty, the algorithm updates the tag t, and either inserts
an path entry if y is an edge port, or recursively calls the algorithm
with the new header and tag (Line 8-14). If there are still headers
that are not forwarded to any ports (recorded by H̄), they would
be dropped, and the algorithm updates the tag and inserts an entry
(Line 15-16).

3.2.3 Verifying the Tags
Algorithm 3 specifies the simple process of tag verification. On

Algorithm 3: Verify(inport, outport, header, tag)
Input: inport/outport: the input/output port of the packet;

header: the header of the packet; tag: the tag of the packet.
Output: True (pass), or False (fail).

1 foreach p ∈ PathTable(inport, outport) do
2 if header ≺ p.headers then
3 if tag = p.tag then
4 return True; // the path is correct
5 else
6 return False; // the path is wrong

7 return False; // the packet should not reach here

receiving a tag report ⟨inport, outport, header, tag⟩, the server
looks up in the path table with index ⟨inport, outport⟩, and for
each path p, it tries to match header with the header set of path
p (Line 1-2). If matched, tag is compared with the tag of path p.
The verification succeeds if these tags are equal (meaning that the
packet followed the right path), or fails otherwise (Line 3-6). If
no matched path is found (meaning that the packet should not have
reached here), then the verification also fails (Line 7).

Let us turn back to Figure 3, and assume H1 sends a pack-
et to port 22 of H3. The packet should take the path of S1 →
S2 → S2 → S3, and the tag should be [1||S1||3] ⊕ [1||S2||3] ⊕
[3||S2||2] ⊕ [1||S3||2]. With (⟨S1, 1⟩, ⟨S3, 2⟩) as the index, the
server would find two paths: one for dst_port = 22 and the oth-
er for dst_port ̸= 22. The header of the packet would match the
packet set of the first path. If the tag of the packet is the same with
that of that path, the verification succeeds. Now consider that rule
R3 fails. Then, the packet will take the path of S1 → S3, and the
tag would be [1||S1||4] ⊕ [3||S3||2], disagreeing with that of the
path.

3.3 Sampling
Tagging and verifying every packet in the network can incur a

large overhead. This overhead can be made significantly smaller
since packets of the same flow will very likely experience the same
forwarding behaviors. In this paper, we use a simple method which
samples packets based on flows at entry switches. Each flow f is
associated with a parameter T f

s > 0, termed the sampling interval.
The entry switch S of f maintains the last sampling instant tf . For
each packet received by S at time t, if t − tf > T f

s , S marks the
packet and updates tf ← t.

4. IMPLEMENTATION AND EVALUATION

4.1 Implementation
Packet Format. VeriDP needs each data packet to carry three ad-
ditional elements: marker, tag, and inport. Here, marker
is just 1 bit indicating whether the packet is sampled for verifica-
tion or not; tag is the XORs of the lower 16 bits of hash out-
put (currently we use CRC32); inport is the input port of the
packet: 10 bits for switch ID, and 6 bits for local port ID. Thus,
VeriDP currently can support 1024 switches, each of which can



have up to 63 ports (one reserved for drop port). We put the 1-bit
marker into the IP TOS field, and use two VLAN tags1 to carry
tag and inport. Finally, tag reports are sent to the verification
server using UDP packets, each carrying four fields, i.e., inport,
outport, header, tag.

VeriDP Server. The server is responsible for constructing the path
table based on network configuration, and searching the path table
for tag verification. The path table construction is based on codes
from [24], which iterates over all possible paths in the network to
detect bugs (e.g., black holes, loops) in the configuration files. We
modify the codes by computing the tag for each path using Eq(1)
to construct the path table. In addition, we add a virtual dropping
port to each switch, and compute paths that end at this dropping
port (i.e., the header sets corresponding to headers that should be
dropped by this switch). Before looking up in the path table, we
first construct a BDD predicate from the header field in the tag
report. To determine whether header ≺ p.headers (Line 2 in
Algorithm 3), we check whether the intersection of their BDD rep-
resentation is not False.

VeriDP Pipeline. The VeriDP pipeline is responsible for sampling
and marking packets, updating tags for marked packets, and send-
ing tag reports to the VeriDP server. We implement the VeriD-
P pipeline with both the CPqD OpenFlow-1.3 software switch [2]
and ONetSwitch [12], a hardware SDN switch we previously built.
For the software switch, the VeriDP pipeline functions after al-
l actions have been executed on a packet, and before the packet
is sent out. For the hardware switch, the VeriDP and OpenFlow
pipeline are both implemented using the FPGA resource. Since it
requires switches to maintain the sampling instance for each phys-
ical flow, we have not yet implemented the sampling components
on the hardware switch due to limit of time.

4.2 Correctness
We use Mininet [4] to emulate a k = 4 fat tree topology, and use

pingall to establish routes between each pair of end hosts. Both
the verification server and the Mininet run on the same PC, with
Intel i3 3.4GHz CPU and 8GB Memory.

Black Holes. We initiate a UDP flow from one host H1 to another
host H2, at a rate of 100 packets/sec. We set up the verification
server and set the sampling interval to 0.1 second. At 15.8 seconds,
we manually remove the forwarding rule for H2 from the flow table
of a switch on the path, in order to simulate a black hole. The effect
is shown in Figure 4(a).

Access Violations. Suppose S is the access switch of a host H2.
We manually add an ACL rule to let S block all packets from an-
other host H1. Then, we set up the verification server and initiate a
UDP flow from H1 towards H2. The sampling interval and pack-
et rate is still set to 0.1 second and 100 packets/sec, respectively.
At 17.2 seconds, we manually remove the ACL rule from the flow
table of S to simulate an access violation. The effect is shown in
Figure 4(b).

4.3 Performance
Verification Throughput. We saturate the verification server with
tag reports, and measure how many can the server process per sec-
ond. For the k = 4 fat tress, we observe the throughput is around
4× 106 verifications/sec. We also use the topology of the Stanford
backbone network, which consists of 16 routers and 10 switches.
We observe a lower throughput of 0.7 × 106 verifications/sec. S-

1Double VLAN tags are supported by 802.1ad [1]; each tag consists of 12
bits VLAN ID, which can be used to carry our data.

Table 2: Processing delay of the VeriDP pipeline and native Open-
Flow pipeline on the hardware switch.

Packet Size (bytes)

128 256 512 1024 1500

VeriDP (µs) 0.19 0.20 0.20 0.20 0.19
Native (µs) 5.62 8.63 14.65 26.69 37.88
Overhead 3.41% 2.31% 1.32% 0.73% 0.50%

ince the verification is still single-threaded without optimization,
we expect a higher throughput with multi-threading in the future.

For the above verification, we generate the configuration with
simple pingall. Therefore, only shortest paths are computed
for each pair of hosts, i.e., there is only one entry for each inport-
outport pair in the path table, and Algorithm 3 only needs to check
one entry. In real networks, there may be multiple paths between
each pair of hosts, and packets with different headers can traverse
via different paths. Thus, we continue to measure how many linear
searches will Algorithm 3 perform in real networks.

Real Network Policies. We construct the path table with the con-
figuration files of the Stanford backbone network [3] and Inter-
net2 [5]. The Stanford network consists of 757,170 forwarding
rules, and 1584 ACL rules; Internet2 has 126,017 forwarding rules
without ACL rules. The time to construct the path table is 3830
ms for Stanford network, and 1327 ms for Internet2. We count the
number of paths per inport-outport pair. The distribution is report-
ed in Figure 5. We can see that the number of paths for each entry
is relatively small, meaning that Algorithm 3 only needs a few time
of searches to match the header (if the header can be matched).

4.4 Overhead
Our implementation of VeriDP on the hardware switch can pro-

cess packets at line speed (1Gbps). We use simulation to find that it
takes 24 clock cycles to tag a packet. As the FPGA has a frequency
of 125MHz, the additional delay is 24 × 1

125×106
= 0.192µs per

hop. Then, we send packets to one port of the switch, receive them
from another one, and record the elapsed times. Let T1 be the e-
lapsed time for native switch with OpenFlow pipeline only, and T2
be that with the modified switch with OpenFlow+VeriDP pipeline.
Then, the processing delay of VeriDP pipeline is ∆T = T2− T1.
Table 2 reports the value of ∆T , T1, and the overhead ∆T/T2, for
packet sizes from 64 bytes to 1500 bytes. Table 2 reports the de-
lay of VeriDP pipeline, native OpenFlow pipeline, and the relative
overhead. We can see that the delay of VeriDP pipeline is around
0.20µs, agreeing with the simulation results. Besides, the overhead
drops when packet size increases, and is strictly less than 5%.

5. RELATED WORK
Recently there are many verification tools proposed for SDN [11].

We broadly classify them into two groups: control plane verifica-
tion and data plane verification.

Control Plane Verification. Some tools are aimed to check the
correctness of network configuration files. Anteater [19] model-
s key network invariants (reachability, loop-freedom, black-hole-
freedom, etc.) as SAT problems, and uses general solvers to check
them. Header Space Analysis [15, 14] represents packet head-
ers as points in n-bit space, and switches as transform functions
that operate on the space. By analyzing the composite transform
functions of switches, Header Space Analysis can check whether
the key invariants are satisfied. VeriFlow [16] can incrementally
check whether a new rule will violate the network invariants in real
time. NoD [18] allows operators to check the correctness of net-
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(a) Black Hole
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(b) Access Violation

Figure 4: Example detection of black hole and access violation with VeriDP.
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Figure 5: CDF of number of paths per inport-
outport pair in the Stanford backbone net-
work and Internet2.

work configuration at a higher abstraction (termed beliefs). The
above tools are orthogonal to VeriDP which checks the compliance
of data plane to network policies. They complement VeriDP by
ensuring the network polices are correct, a premise for VeriDP to
detect bugs.
Data Plane Verification. ATPG [25] generates a minimum num-
ber of probe packets to trigger all rules in the network. However,
it only checks the reception of probe packets, without verifying
their trajectories which are vital to configuration correctness. SDN
Traceroute [6] enables the SDN controller to trace the trajecto-
ry of a flow, also based on probe packets. A limitation of them
is that real packets may experience different forwarding behaviors
with probe packets, making the verification results less convincing.
Packet trajectory tracers like PathletTracer [27], PathQuery [21],
and CherryPick [23] let each switch to imprint path information
into packet headers, so that packet trajectories can be decoded by
the receivers. However, packet trajectories by themselves are not
very useful unless we know whether they are correct. In contrast,
VeriDP not only traces packet trajectories, but also enables the con-
troller to reason about whether the trajectories are compliant with
high-level policies.

6. CONCLUSION AND FUTURE WORK
This paper presented VeriDP, a new tool to monitor the policy

compliance of SDN data plane. VeriDP checks whether packet
forwarding behaviors are agreeing with the network configuration
files, based on packet tagging. We implemented VeriDP on both
software and hardware switches to demonstrate its feasibility, and
used emulation to show it can detect common data plane faults like
black holes and access violation. Our future work includes design-
ing a fault localization method to pinpoint root causes when policy
incompliance is detected.
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