
634 Wang et al. / Front Inform Technol Electron Eng 2016 17(7):634-646

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Asecure andhigh-performance multi-controller

architecture for software-defined networking∗

Huan-zhao WANG†1,2, Peng ZHANG†‡1,3, Lei XIONG1, Xin LIU1, Cheng-chen HU†1,3

(1Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China)

(2Science and Technology on Information Transmission and Dissemination in

Communication Networks Laboratory, Shijiazhuang 050081, China)

(3MOE Key Laboratory for Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an 710049, China)
†E-mail: hzhwang@xjtu.edu.cn; p-zhang@xjtu.edu.cn; huc@ieee.org

Received Oct. 7, 2015; Revision accepted Jan. 26, 2016; Crosschecked June 8, 2016

Abstract: Controllers play a critical role in software-defined networking (SDN). However, existing single-
controller SDN architectures are vulnerable to single-point failures, where a controller’s capacity can be saturated by
flooded flow requests. In addition, due to the complicated interactions between applications and controllers, the flow
setup latency is relatively large. To address the above security and performance issues of current SDN controllers,
we propose distributed rule store (DRS), a new multi-controller architecture for SDNs. In DRS, the controller
caches the flow rules calculated by applications, and distributes these rules to multiple controller instances. Each
controller instance holds only a subset of all rules, and periodically checks the consistency of flow rules with each
other. Requests from switches are distributed among multiple controllers, in order to mitigate controller capacity
saturation attack. At the same time, when rules at one controller are maliciously modified, they can be detected and
recovered in time. We implement DRS based on Floodlight and evaluate it with extensive emulation. The results
show that DRS can effectively maintain a consistently distributed rule store, and at the same time can achieve a
shorter flow setup time and a higher processing throughput, compared with ONOS and Floodlight.

Key words: Software-defined networking (SDN), Security, Multi-controller, Distributed rule store
http://dx.doi.org/10.1631/FITEE.1500321 CLC number: TP393

1 Introduction

Software-defined networking (SDN) promises a
centralized, flexible, and programmable control of
computer networks. In a typical SDN, a controller
compiles network policies into forwarding rules, and
installs them at switches through a standard channel,

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 61402357, 61272459, and 61402357), the China
Postdoctoral Science Foundation (No. 2015M570835), the Fun-
damental Research Funds for the Central Universities, China,
the Program for New Century Excellent Talents in University,
and the CETC 54 Project (No. ITD-U14001/KX142600008)

ORCID: Peng ZHANG, http://orcid.org/0000-0001-7721-2675
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

e.g., OpenFlow (McKeown et al., 2008). Switches
simply enforce these rules, thereby realizing the in-
tended network policies.

As a key component in SDN, the controller func-
tions as a bridge between network applications and
switches. However, current single-controller archi-
tectures suffer from the following drawbacks: (1)
The controller can become a single-point failure un-
der attack: an adversary can flood flow requests to-
wards the controller, in order to saturate its pro-
cessing capacity (Shin et al., 2013); (2) The re-
sponse time to flow requests is relatively long, due to
the complicated interaction of applications through
the northbound application programming interface

Wang et al. / Front Inform Technol Electron Eng 2016 17(7):634-646 635

(API). This can result in a large flow setup latency.
Even though there are some multi-controller solu-
tions (Tootoonchian and Ganjali, 2010; Yeganeh and
Ganjali, 2012; Berde et al., 2014), we find that they
are still rooted in the traditional single-controller de-
sign philosophy, where applications and controllers
are closely coupled. As a result, they still have a rel-
atively large flow setup latency and low processing
throughput.

To address the above issues of current SDN con-
trollers, we propose the distributed rule store (DRS),
a new multi-controller architecture that takes both
security and performance into consideration. In
DRS, flow rules calculated by applications are cached
across multiple controllers, and each controller holds
only a subset of all rules. The controllers then pe-
riodically check the consistency of their rules with
each other, so that when rules at one controller are
maliciously modified, they can be detected and re-
paired. When a flow request comes, the controller
simply looks up in its cache for the corresponding
rules, without the interaction of applications. Thus,
the response time to flow requests can be significantly
reduced.

When realizing DRS, we are faced with the fol-
lowing challenges: (1) How to partition flow rules
among multiple controllers, such that each controller
has roughly the same storage load? (2) How to check
the consistency of multiple replicas of a single flow
rule, such that faulty rules can be detected and recov-
ered in time? (3) How to update flow rules efficiently,
such that a single network event causes only a small
number of rules to be updated? (4) How to assign
multiple controllers to switches, such that each con-
troller has roughly the same processing load?

We will show how we address the above chal-
lenges in the rest of this paper. In sum, our contri-
bution is three-fold:

1. We propose DRS, a new multi-controller ar-
chitecture, which can mitigate the controller capac-
ity saturation threats and malicious rule modifica-
tions in SDN, and at the same time improve the
performance of the SDN control plane.

2. We implement a distributed controller based
on DRS, and design a controller assignment algo-
rithm to distribute processing load evenly across
multiple controllers.

3. We conduct extensive emulation to demon-

strate that the DRS-based distributed controller can
achieve a smaller flow setup latency, higher process-
ing throughput, and better load balance than Flood-
light and ONOS.

2 Motivation

In this section, we first validate the controller
capacity saturation attack with a simple experiment.
Then we show the limitation of flow rule installation
mechanisms used in current SDN controllers.

2.1 Controller capacity saturation

In this subsection, we carry out an experiment
to validate the possibility of controller capacity satu-
ration, which was first studied by Shin et al. (2013).
We use Mininet (Lantz et al., 2010) to emulate a
FatTree (k = 4), controlled by a single Floodlight
controller (Floodlight Project, 2016). Mininet is a
tool that uses process-based virtualization to emu-
late hosts and switches in Linux’s network space.
The emulated network and the controller reside on
two different Linux servers.

Let several hosts flood User Datagram Proto-
col (UDP) packets to some other hosts using Trinoo
(Dittrich, 1999), such that the top of rack (ToR)
switches connected with these hosts will generate a
large number of flow requests to the controller. At
the same time, let one host periodically ping an-
other host to check the availability of the Floodlight
controller. To avoid letting the flooded UDP traf-
fic interfere with the ping packets, we carefully ar-
range the paths of these UDP packets so that they
do not share any common switch with those of the
ping packets. Fig. 1 reports the results with different

1750

1500

1250

1000

750

500

250

0
0 1000 2000 3000 4000 5000 6000 7000 8000

P
in

g
re

sp
on

se
 ti

m
e

(m
s)

Attack rate (packet/s)

Fig. 1 Ping time vs. the tack rate

636 Wang et al. / Front Inform Technol Electron Eng 2016 17(7):634-646

UDP sending rates. We can see that the ping time
increases sharply when there are more than 6000 re-
quests per second. This means that the controller
can indeed cause a single point failure in SDN, which
can be exploited by an adversary to launch a con-
troller capacity saturation attack.

2.2 Proactive and reactive rule installation

In SDN, a controller controls the network mainly
by installing flow rules at switches. Currently,
there are two different modes to install flow rules:
proactive/push mode and reactive/pull mode.

In the proactive mode, the controller pre-installs
flow rules in the flow tables of switches. Then pack-
ets matching these rules will be forwarded at line
speed, without interacting with the controller. How-
ever, since hardware rule tables (implemented with
ternary content addressable memory (TCAM)) are
rather scarce resources, it is impractical to pre-install
all rules at switches.

In the reactive mode, a switch does not need
to store all the rules. Instead, it requests flow rules
whenever it does not know how to process a new
flow. Even though the reactive mode does not re-
quire a large rule table at switches, it can incur a
large flow setup latency. The root cause we found is
the complicated interaction between controllers and
applications.

We further illustrate how the interaction be-
tween controllers and applications can slow down
the processing of flow requests. When a flow re-
quest comes to a controller, the controller will first
trigger an internal event, which will be dispatched to
all applications that have registered for that kind of
event. These applications will then query the net-
work view application programming interface (API)
maintained by the controller for network status (e.g.,
topology and link status). Next, the applications will
compute a set of flow rules, and then call the con-
troller API again to install these rules. Note that
these interactions take place in sequence, and can
hardly be made parallel in time.

As stated above, both the proactive and reac-
tive modes of rule installation have their respective
problems. This motivates us to find a more efficient
approach to speed up the processing of flow requests
in SDN.

3 Design of distributed rule store

In this section, we first present the architecture
of DRS, and then elaborate the design details.

3.1 Architecture

Fig. 2 shows the architecture of DRS, which
consists of three layers. At the bottom layer are
the controller instances (or simply controllers), each
of which controls a subset of switches. These con-
trollers manage connections with switches via stan-
dard southbound APIs (e.g., OpenFlow), collect
topology information and statistics, accept requests
from switches, and install flow rules. At the top
layer are applications that realize various network
policies, including routing, network slicing, access
control, and traffic engineering. In between the con-
trollers and applications are two modules: the global
network view and the distributed rule store.

Controller

Global
network
view

Application Application Application Application

Rule lookup Topology update

Rule generation Topology query

Controller Controller

Incremental
rule update

Consistency
check

Rule
partition

Distributed rule store

Controller assignment

Fig. 2 Architecture of the distributed rule store

The global network view is a database that
stores the network states, including network topol-
ogy, link status, and switch information. It is shared
by all controllers: each controller propagates its local
network updates to other controllers, and constructs
the global network view by assembling all network
updates received from other controllers.

The DRS is a distributed key-value store for flow
rules, acting as a medium between controllers and
applications. It intercepts flow rules pre-computed
or installed by applications, and the controllers look
up in the DRS for flow rules that can satisfy the
flow requests. In this way, applications are decou-
pled from the flow request processing, and thus the
reactive rule installation can become faster.

Note that we are not using off-the-shelf solu-
tions like Cassandra (Lakshman and Malik, 2010) or

Wang et al. / Front Inform Technol Electron Eng 2016 17(7):634-646 637

RAMCloud (Ousterhout et al., 2010) as in ONOS.
The reason is that we want to customize our key-
value store so as to support our consistency check
algorithms, as will be shown in Section 3.5. In ad-
dition, a distributed key-value store does not take
locality into account. When a controller needs to
retrieve a set of rules, these rules may be physically
stored at many other controller instances. On the
other hand, DRS can partition rules in a more flex-
ible manner so as to minimize the possibility of re-
mote retrieval.

There are four modules in the DRS architec-
ture: (1) The rule partition module partitions and
distributes rules among multiple controllers; (2) The
consistency check module checks whether multiple
replicas of each rule are consistent, and repairs faulty
rules when detecting them; (3) The incremental rule
update module updates rules when the network sta-
tus changes, in an incremental way; (4) The con-
troller assignment module assigns a controller for
each switch so that the request processing load is
balanced among multiple controllers. In the follow-
ing, we give design details of these modules.

3.2 Rule generation and update

There are two ways that rules are generated and
cached in DRS. For the first one, applications can
pre-compute all the rules and push them into the
rule store. This method requires enumeration of all
the possible requesting flows, and thus is not suit-
able for all applications. For the second one, when
an application installs a new rule, it attaches an ex-
pire time to it. The controller then caches this rule
together with the expiration time. When there is
a flow that requests the same rule, the controller
checks whether the rule has expired. If not, the con-
troller directly installs this rule on switches. This
method is less demanding for applications. We im-
plemented the above two methods in our DRS-based
distributed controller. Note that DRS can work
seamlessly with legacy applications, which can nei-
ther pre-compute rules, nor attach expiration time
to enable rule caching. For such applications, DRS
simply handles the flow request to applications as
usual, without caching any rule installed by them.

When the network topology changes, e.g., a link
becomes up or down, rules in DRS should be up-
dated. To save update cost, DRS updates only those

rules that are affected by the topology changes. For
routing applications, we achieve this as follows. The
controller maintains a table to record all link-to-rule
mappings. The key of the table is the link ID, and the
value is the set of rules which use that link. When
the link status changes, only those flow rules that
use this link will be re-computed. Node failures can
be seen as a special case where multiple links (those
associated with this node) are down. Then all rules
associated with these links are recomputed.

3.3 Rule partition

DRS partitions flow rules and stores them in
a distributed hash table (DHT), which is inspired
by Chord (Stoica et al., 2001). The major differ-
ence from Chord is that DRS stores multiple replicas
for each flow rule, and maintains consistency among
these replicas.

The detailed procedure of rule partition is as
follows. First, for each controller with identifier C,
we calculate its index as H(C), where H is a consis-
tent hash function (Karger et al., 1997). Controllers
are arranged in a ring clockwise in ascending indices.
Second, for each rule r with matching field r.match,
we calculate its index as H(r.match). Then r is as-
signed to a controller C if C has the smallest index
that is larger than H(r.match). For redundancy, r is
also replicated at another k − 1 controllers, where k

is termed the redundancy rate. In this case, we say
controller C assumes the primary role for rule r, and
the other k − 1 controllers assume a secondary role
for rule r.

Fig. 3 is an example where k = 3. Apart from
controller C2, rule r is also stored at two neighboring
controllers, i.e., C1 and C3. Here, C2 is the primary
controller; C1 and C3 are secondary controllers, with
respect to rule r. As the number of controllers is
relatively small (unlikely to exceed 10), we let each
controller store the IP addresses and the indices of
all other controllers. In this way, it is to locate the
controllers where a rule is stored.

Note that multiple applications may generate
rules with the same matching field. Even for the
same application, it may also generate multiple rules
for the same matching field. For example, a rout-
ing application will generate a forwarding rule for
each switch along the forwarding path, and all these
forwarding rules have the same matching field (e.g.,

638 Wang et al. / Front Inform Technol Electron Eng 2016 17(7):634-646

8-bit key space C2

C4

C3

0

11

65

128

150

235

Rule r, ID=128

Secondary
[11, 65)

Primary
[65, 150)

Secondary
[150, 235)

12
8

Rule list for ID=128
C2's rule store

Key
range

C1

r

Fig. 3 An example for rule partition in DRS. The output of the hash function is eight bits, and there are four
controllers. Rule r has a hash value of 128 and is stored at controller C2 and C2’s two neighbors (C1 and C3)

destination IP address). Thus, inside a controller’s
rule store, each entry is actually a list of rules with
the same index. Apart from matching fields and
actions, each entry also stores meta data including
switch ID, priority, and expiration time.

3.4 Request processing

The processing of a flow request can be divided
into two phases: rule retrieval phase and rule in-
stallation phase. Each phase requires cooperation
among multiple controllers. The whole process is
summarized in Algorithm 1.

1. Rule retrieval phase
When receiving a flow request f , a controller

C calculates the rule index as H(f.match), where
f.match is the matching field of f . Based on the
rule index, the controller identifies the primary con-
troller and all other secondary controllers. If C itself
is among these controllers, then it just retrieves the
rules from its local rule store. Otherwise, C tries
to retrieve the rules from the primary controller. If
the primary controller is not responding, then C re-
trieves them from other secondary controllers.

2. Rule installation phase
After retrieving the rules, C begins to install

these rules one by one. For each rule r, if r has not
expired, C checks whether the switch S at which to
install r is in its own site (i.e., directly connected with
controller C). If so, C installs r directly; otherwise,
C asks the remote controller which manages S to
install r.

Note that rules should be installed in the re-
verse order as compared to the order by which they
appear on the path, so as to guarantee consistency.
Specifically, suppose controller C1 needs to set up

Algorithm 1 Flow request processing
Input: the set of switches managed by the controller,

S; the flow request sent from switch sw and with
matching field f.match, f .

1: rid← H(f.match)
2: C ← LocateByRule(rid)
3: R← {}
4: for all c ∈ C do
5: if c is available then
6: R← SearchRules(c, rid)
7: break
8: end if
9: end for

10: if R == {} then
11: Handle the flow request to applications
12: end if
13: for all r ∈ R do
14: if r.switch ∈ S then
15: Install rule r at switch r.switch

16: else
17: c← LocateBySwitch(r.switch)
18: Call controller c to install rule r

19: end if
20: end for

a path S1 → S2 → S3 → Dst, where S1 is con-
trolled by controller C1 and the other two switches
are controlled by controller C2. Then C1 would re-
motely call C2 to install the rules for S3 → Dst and
S2 → S3 in sequence, and then install the rules for
S1 → S2. In this way, the packet will be sent only
when all rules along the path have been installed.
Even so, inconsistency is still possible due to trans-
mission delays from controllers to switches. There
are many previous works that tried to guarantee
strong consistency during network updates (McGeer,
2012; Reitblatt et al., 2012; Katta et al., 2013; Ma-
hajan and Wattenhofer, 2013; Perešíni et al., 2013;

Wang et al. / Front Inform Technol Electron Eng 2016 17(7):634-646 639

Paul, 2014). We will not go into details here, since
the focus of this study is to improve the control plane
performance rather than guarantee strong consis-
tency on the data plane.

3.5 Consistency check

As DRS maintains multiple replicas for each
rule, it should ensure that these replicas are con-
sistent over time. This can prevent faulty rules from
being installed at a switch causing problems in the
network. In addition, consistency checks can defend
controllers against malicious rule modifications at a
single controller.

To maintain consistency, controllers coopera-
tively check each rule periodically. When a new
round of consistency checks begins, each secondary
controller sends its rules to the primary controller,
which checks whether all replicas of each rule are con-
sistent. If not, it resolves the conflicts and repairs the
faulty rules.

Currently, we use a simple majority voting
method to resolve conflicts. Specifically, supposing
the redundancy rate is k, this approach can detect
up to �(k−1)/2� faulty replicas. If any faulty replica
is detected, the primary controller sends the cor-
rect copy to controllers that hold faulty replicas for
correction.

We use the Merkle hash tree (MHT) (Merkle,
1988) to reduce the overhead of consistency check.
Take Fig. 4 as an example, where there are four con-
trollers, and the redundancy rate is k = 3. Controller
C2 assumes the primary role for rules R1 through R4.
The hash values of these rules are made as the leaf
nodes. The parent node of two adjacent leaf nodes
is the hash of their concatenation. This process con-
tinues iteratively until the root node (MHT22) is
obtained. Controller C2 also maintains another two

MHTs for rules for which C2 assumes a secondary
role (C1 and C3 assume the primary role for these
rules, respectively). Similarly, each of the other three
controllers also maintains three MHTs.

When consistency check begins, C1 and C3 send
MHT12 and MHT32 to C2, respectively. Then C2

checks whether MHT22=MHT12=MHT32. If the
equation does not hold, then C2 continues to check
these MHTs to locate the faulty rules. As shown in
Fig. 4, C2 would search MHT22 down through A22
and A13, and finally find that R3 is faulty. After lo-
cating the faulty rule R3, C2 would replace the faulty
rule with the correct replica from C1 or C3. Since
controllers exchange only a small number of hash val-
ues in each round, the MHT-based consistency check
can significantly reduce the overhead if faults are not
too frequent. We will evaluate the overhead of the
MHT-based consistency check in Section 4.3.

3.6 Controller assignment

In the following, we show how the DRS assigns
controllers to switches, such that each controller has
relatively the same processing load. Suppose there
are n controllers and m switches. Then the con-
troller assignment problem can be formulated as the
following mixed integer program:

min max
j∈{1,n}

∑

i∈{1,m}
xi,jωi

s.t. (1) ωk =
∑

i∈{1,m}

∑

j∈{1,m}
ri,jd

k
i,j , ∀k ∈ {1,m},

(2)
∑

j∈{1,n}
xi,j = 1, ∀i ∈ {1,m},

(3)
∑

j∈{1,n}
xi,j

∏

k∈a(i)

xk,j = 1, ∀i ∈ {1,m},

(4) xi,j ∈ {0, 1}, ∀i ∈ {1,m}, ∀j ∈ {1, n}.
Here xi,j = 1 if switch i is assigned to controller

R1

A11=H(R1)

R2

A12=H(R2)

R3

A13=H(R2)

A21=H(A11||A12)

A14=H(R2)

A22=H(A13||A14)

R4

MHT22=H(A13||A14)MHT21 MHT23

C2
MHT11MHT14 MHT12

C1

MHT33MHT32 MHT34

C3

MHT43MHT42 MHT44

C4

Check whether MHT22=MHT12=MHT32

Fig. 4 An example for consistency check in DRS based on the Merkle hash tree

640 Wang et al. / Front Inform Technol Electron Eng 2016 17(7):634-646

j, or 0 otherwise; dki,j = 1 if switch k is on the path
of a flow from switch i to switch j, or 0 otherwise;
ri,j is the flow setup rates from switch i to switch
j, i.e., the number of new flows per unit time; a(i)
is the set of switches that should be assigned to the
same controller with switch i. Constraint (3) en-
sures that once switch j is assigned to controller j,
all switches in a(i) should also be assigned to con-
troller j. Since the problem is NP, we use a simple
heuristic algorithm (Algorithm 2) to find an approx-
imate solution.

Algorithm 2 Heuristic controller assignment
Input: the flow request rate from switch i to switch j,

r(i, j); a variable indicating whether switch k is on
the path of flow from switch i to switch j, dki,j .

Output: controller assignment strategy, Ctr.
1: s(i)← 0, ∀i ∈ [1, m]

2: c(i)← 0, ∀i ∈ [1, n]

3: for i, j, k ∈ [1, m] do
4: if dki,j == 1 then
5: s(k)← s(k) + r(i, j)

6: end if
7: end for
8: Sort switches by descending order of s(i)
9: for i ∈ [1, m] do

10: j ← argminkc(k)

11: Ctr(i)← j

12: c(j)← c(j) + s(i)

13: end for

In Algorithm 2, lines 3–7 compute the flow re-
quest rate for each switch, given the flow setup
rates of all source-destination switch pairs. Line 8
sorts switches by descending order of request rates.
Lines 9–13 assign each switch to a controller with the
minimum accumulated request rates.

4 Implementation and evaluation

In this section, we first present the implemen-
tation of our DRS controller, and then evaluate its
performance with emulation.

4.1 Implementation

We implement the DRS distributed controller
based on Floodlight version 1.0, which supports the
OpenFlow-1.0 protocol (Floodlight Project, 2016).
We modify the processing logic of packet-in mes-
sages, according to Algorithm 1. Each controller

allocates additional memory space for rule storage.
The communication among multiple controllers (in-
cluding rule retrieval, rule installation, consistency
check, etc.) is implemented with a remote procedure
call (RPC). Since Floodlight is written in Java, we
use the Java Remote Method Invocation (RMI) for
RPC. There are around 2000 lines of code (LOC) in
total.

4.2 Setup and methodology

We use Mininet (Lantz et al., 2010) to emulate
a network of Open vSwitches (Pfaff et al., 2009), on
a Linux server with two Intel Xeon CPUs (each with
six cores) and 32 GB DDR3 memory. We run con-
trollers in separate virtual machines (VMs) hosted
on another two Linux servers, and each controller
is allocated two CPU cores. Before the experiment,
let each pair of hosts ping each other so that the
controller can discover all the hosts.

We will compare DRS with two controllers:
Floodlight (the native Floodlight controller, which
supports only a single controller (Floodlight Project,
2016)) and ONOS (a distributed controller whose
implementation is based on Floodlight (Berde et al.,
2014)).

We will consider the following five performance
metrics:

1. Consistency check efficiency: the time for con-
trollers to detect and repair faulty rules. It measures
the efficiency of the consistency check method based
on MHT.

2. Flow setup latency: the time between a con-
troller receiving a flow request, and when the corre-
sponding flow rules are sent out. This measures the
controllers’ response time to flow requests, which re-
flects the flow setup latency.

3. Processing throughput: the number of re-
quests per second that can be processed by the con-
trollers. This measures the processing throughput of
the controllers.

4. Load balance: the maximum processing load
of a controller. This measures how well balanced the
processing load is among multiple controllers.

5. Rule update overhead: the time for con-
trollers to update rules when link states change. This
measures the overhead incurred by our rule update
method.

Wang et al. / Front Inform Technol Electron Eng 2016 17(7):634-646 641

4.3 Consistency check efficiency

This experiment evaluates the cost of MHT-
based consistency check in DRS. We construct two
FatTree topologies (k = 4 and k = 8), which are
controlled by four controllers. The total forwarding
rules in these two topologies are 2184 and 417 028,
respectively. To generate faulty rules, we randomly
modify a set of rules in one of these four controllers.
Fig. 5 reports the time for controllers to detect and
repair the faulty rules, where the numbers of faulty
rules are 1, 10, 50, and 100, respectively. The error

Number of faulty rules
0 20 40 60 80 100
0

500

1000

1500

2000

k=4
k=8

Ti
m
e
(m
s)

Fig. 5 Time cost of the consistency check under dif-
ferent numbers of faulty rules (k = 4 and k = 8). The
error bars for each data point correspond to the 30-
and 70-percentile values

bars indicate the 30- and 70-percentile values. We
can see that the cost of consistency check is rather
small when there are fewer than 10 faulty rules, for
both topologies. In addition, with the increase of the
number of faulty rules, the cost grows sub-linearly.

4.4 Flow setup latency

We first compare the response time of DRS with
that of Floodlight. We run one controller for both
DRS and Floodlight to ensure a fair comparison. We
use a FatTree (k = 6) topology, and let one host A

periodically ping another host B. Since A and B

reside on different pods in this topology, the shortest
path between them has six hops. The access switch
connected with host A will send flow setup requests
to the controller (in the form of packet-in messages).
We run a simple shortest-path routing application
on the controller to process flow requests and install
rules. We set the ping interval to 5 s, and the hard
rule timeout to 1 s. In this way, each ping will trig-
ger the access switch to send a flow request to the
controller.

Fig. 6a reports the ping time for both DRS and
Floodlight. We can see that DRS has a much shorter

100 150 200
0

0.2

0.4

0.6

0.8

1.0

Floodlight
DRS

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

0 50
Ping time (ms) Response time (ms)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1.0

Floodlight
DRS

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(a) (b)

100 150 200
0

0.2

0.4

0.6

0.8

1.0

Floodlight
DRS

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

0 50
Ping time (ms) Response time (ms)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1.0

Floodlight
DRS

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(c) (d)

Fig. 6 Comparison of DRS and Floodlight on ping time and response time: (a) ping time without background
flow requests; (b) response time without background flow requests; (c) ping time with background flow requests
of 1000 per second; (d) response time with background flow requests of 1000 per second

642 Wang et al. / Front Inform Technol Electron Eng 2016 17(7):634-646

ping time than Floodlight. Note that the ping time
is composed of 2× response time to flow requests,
and a round-trip propagation time. Fig. 6b reports
the controller’s response time to flow requests only,
measured by the elapsed time from the time at which
a request is received by the controller to the time at
which the flow rules are sent out by the controller.
We can see that the gap between DRS and Floodlight
is even more remarkable.

In the above experiments, there are no back-
ground flow requests. Figs. 6c and 6d show the re-
sults when there are 1000 background requests per
second. We observe that the ping and response times
for DRS are barely affected, while those for Flood-
light increase.

The above results show that the rule caching
strategy used in DRS is effective in reducing the
controller’s response time. The slow response of the
Floodlight controller is mainly due to the compli-
cated interaction of the routing application with the
Floodlight REST API.

Following the above experiments that measure
the response time of a single controller, we continue
to evaluate the response time when there are multi-
ple DRS controllers. Different from the above exper-
iments, we implement the routing application as a
module in the controller. This can make the interac-
tion of application with the controllers more efficient,
compared with that using the REST API. To sim-
plify the assignment of controllers to switches, we
use a linear topology consisting of 100 switches. We
let the first switch ping the last switch periodically,
and measure the ping time.

Fig. 7 reports the ping time for DRS and ONOS,
when there are n = 2, 3, 4 controllers. We can
see that for both DRS and ONOS, the ping time
drops when there are more controllers. The ping
time for DRS is shorter than that for ONOS when
they use the same number of controllers. The results
demonstrate the advantage of DRS over ONOS in
fast response to flow requests.

4.5 Processing throughput

This experiment measures the processing
throughput of DRS, compared with Floodlight. We
use a FatTree (k = 4) topology, and let multiple
end hosts send UDP packets to their neighboring
hosts with changing destination port numbers. The

controllers install rules that exactly match on the
destination port, so that every UDP packet will trig-
ger the receiving switch to send a packet-in message
to one of the controllers. To reduce the data-plane
traffic, we clear the action lists of each rule installed
by the controllers, so that the UDP packet will be
discarded without further transmission. We increase
the sending rates to saturate the controllers’ process-
ing capacity, and report the results in Fig. 8.

From Fig. 8, we can see that DRS with a
single controller has roughly the same processing
throughput as Floodlight. In addition, the process-
ing throughput of DRS increases when there are mul-
tiple controllers. This demonstrates the scalability
of DRS when supporting large networks.

Ping time (ms)
400 600 800 1000 1200 1400

0

0.2

0.4

0.6

0.8

1.0

DRS (n=2)
DRS (n=3)
DRS (n=4)
ONOS (n=2)
ONOS (n=3)
ONOS (n=4)

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

Fig. 7 Comparison of DRS and ONOS on ping time.
The ping is made from the first to the last switch in
a linear topology of 100 switches

Time (s)
0 5 10 15 20 25
0

10

20

30

40

50
DRS (n=1)
DRS (n=2)
DRS (n=3)
DRS (n=4)
Floodlight

Th
ro
ug
hp
ut
(×
10

3 /s
)

Fig. 8 Comparison of DRS and Floodlight on pro-
cessing throughput

4.6 Load balance

First, we use simulation to evaluate the approx-
imation rate of Algorithm 2 that we have proposed

Wang et al. / Front Inform Technol Electron Eng 2016 17(7):634-646 643

for controller assignment. We use a FatTree (k = 4)
topology with four controllers, and generate random
request rates for each pair of switches. We run Algo-
rithm 2 to obtain an approximate assignment strat-
egy, where the maximum load of a controller is L1.
Then we exhaust all assignment strategies to find
the optimal value (L2), and calculate the approxi-
mation ratio as L2/L1. Fig. 9 reports the CDF of
the approximation ratio, where the distribution is
obtained from 100 experimental runs. We can see
that the ratio is strictly above 0.9 for this topology,
meaning that the assignment strategy obtained us-
ing Algorithm 2 can well approximate the optimal
one.

Then we continue to validate the effectiveness of
Algorithm 2 in emulated networks. We construct a
FatTree (k = 4) topology with four controllers, and
let each switch initiate flows to all other switches
at the same rate. We apply Algorithm 2 to find
an assignment strategy, and use it to configure the
connections among switches and controllers. The
processing load of a controller is measured by the
number of FlowMod messages it sends. For com-
parison, we also apply a random strategy to assign

0.85 0.90 0.95 1.00
0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

Approximation rate

Fig. 9 Approximation rate of Algorithm 2

controllers.
Figs. 10a and 10b report the numbers of Flow-

Mod messages sent by each controller, under ran-
dom assignment and Algorithm 2, respectively. We
can see that with random assignment, the processing
loads of controllers are rather uneven. The busiest
controller C4 has a load that is nearly five times that
of controller C3. On the other hand, the approx-
imate assignment can achieve a well balanced load
distribution. Actually, we found that this is also the
optimal solution under this specific setting.

4.7 Rule update overhead

This experiment evaluates the cost of the in-
cremental rule update method introduced in Sec-
tion 3.2. We still consider the routing application,
and we are interested in how many rules need to
be recomputed if a link state change occurs. Note
that the update cost varies among links. For exam-
ple, link state changes at the bottom layer of a tree
network will have a small effect on rules, since the
number of flows using these links is relatively small.
On the other hand, link ups and downs at the core
layer can affect many rules. Thus, apart from the av-
erage cost, we measure the maximum and minimum
update costs, respectively.

Table 1 shows the update percentage and time
for four different topologies, i.e., linear (n = 100) and
FatTrees (k = 4, 6, 8). Here, the update percentage is
defined as the ratio of the number of updated rules to
the number of all rules. We can see that for FatTrees,
a single link state change will cause only a small
portion of rules to be recomputed, due to mainly the
multi-path nature of FatTrees. On the other hand,
the linear topology stands as an extreme case, where

Number of FlowMod messages
0 5000 10000
0

0.2

0.4

0.6

0.8

1.0

C1
C2
C3
C4

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

Number of FlowMod messages
0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1.0

C1
C2
C3
C4

C
um
ul
at
iv
e
di
st
rib
ut
io
n
fu
nc
tio
n

(a) (b)

Fig. 10 Processing load of each controller, with random assignment (a) and Algorithm 2 (b)

644 Wang et al. / Front Inform Technol Electron Eng 2016 17(7):634-646

Table 1 Rule update cost when using our incremental update strategy

Metric Linear (n = 100) FatTree (k = 4) FatTree (k = 6) FatTree (k = 8)

Minimum percentage <0.01% 0.27% 0.02% <0.01%
Maximum percentage 36.76% 3.07% 0.61% 0.19%
Average percentage 12.57% 2.23% 0.41% 0.12%

Minimum time (ms) <1 <1 <1 <1
Maximum time (ms) 8763 61 81 243
Average time (ms) 2237 16 27 42

there is only one path between any pair of switches.
Thus, we can see that the update cost is much higher
than that in FatTrees. The variance of update cost is
also very large. For example, the minimum update
percentage is less than 0.01%, while the maximum
value is 36.76%.

5 Related work

5.1 Controller capacity saturation

Shin et al. (2013) introduced the controller ca-
pacity saturation attack, in which an adversary tries
to exhaust the controller’s resource by mounting
SYN flooding attacks. They implemented a con-
nection migration method to proxy all Transmission
Control Protocol (TCP) connections at switches.
This method works for only TCP SYN flood-
ing, without considering other distributed denial-of-
service (DDoS) attack methods like UDP flooding.
In addition, it requires much modification at SDN
switches.

5.2 SDN controllers

There are several open source SDN controllers,
like NOX (Gude et al., 2008), its Python variant
POX (NOXRepo, 2016), Ryu (Ryu SDN Framework
Community, 2014), and OpenDaylight (OpenDay-
light Project, 2016). These controllers focus mainly
on the single-controller scenario, and are not opti-
mized for distributed control.

5.3 Distributed SDN controllers

Many distributed SDN controller solutions have
been proposed to improve the control plane perfor-
mance. We group these solutions into two classes,
depending on whether a distributed storage system
is used.

The first class includes Hyperflow (Tootoon-

chian and Ganjali, 2010), Kandoo (Yeganeh and
Ganjali, 2012), and Pratyaastha (Krishnamurthy
et al., 2014). Hyperflow (Tootoonchian and Ganjali,
2010) is an early effort in designing distributed SDN
controllers. It introduces a publish/subscribe mech-
anism atop the NOX controller using distributed file
systems. Individual controllers communicate with
one another, so that each controller has the global
view. In this way, controllers can locally process
all requests from switches they control. However,
the frequent controller-to-controller interaction can
incur a large communication overhead. Kandoo
(Yeganeh and Ganjali, 2012) and Pratyaastha (Kr-
ishnamurthy et al., 2014) mitigate this problem by
partitioning network states. Each controller main-
tains only a subset of states, and can handle local
events in the subnet controlled by it. Specifically,
Kandoo distinguishes between local applications re-
quiring only local states, and global applications
requiring network-wide states. Local applications
run on multiple local controllers, while global ap-
plications run on the root controller. A problem
with Kandoo is that the root controller can cause
single-point failures. In addition, both Kandoo and
Pratyaastha are application-dependent, and require
application developers to carefully partition states,
which can become a highly demanding task.

The second class includes Onix (Koponen et al.,
2010) and ONOS (Berde et al., 2014). They use
distributed storage systems to maintain the global
network states, which provide a graph API for appli-
cations. Controllers are responsible mainly for man-
aging connections with switches, and propagating
events to the distributed storage systems. For these
solutions, the distributed storage system acts as a
middle layer for applications and controllers. Any
request from a switch will go through the controller,
the storage systems, and then the applications. Af-
ter the applications finish processing the request, the

Wang et al. / Front Inform Technol Electron Eng 2016 17(7):634-646 645

flow rules will be propagated all the way back to the
switch. This incurs a relatively large latency when
processing flow requests.

5.4 SDN controller migration

ElastiCon (Dixit et al., 2013) studies how to
achieve load balance among multiple controllers.
The authors leveraged OpenFlow to perform switch
migration, so that switches can migrate from one
controller to another depending on controllers’ cur-
rent loads. The migration approach is orthogonal to
our multi-controller architecture, but can be lever-
aged to reassign controllers periodically in DRS.

6 Conclusions

This paper deals with the security and perfor-
mance issues of current SDN controllers. We pro-
posed DRS, a new multi-controller solution which
can help mitigate security issues in SDN, and can
improve the performance of SDN controllers. Specif-
ically, DRS can mitigate the controller capacity sat-
uration attack by strategically distributing flow rules
and assigning controllers. In addition, DRS uses an
MHT-based consistency check to detect rule modifi-
cations. As for performance, DRS uses rule caching
to reduce the response time to flow requests, and
thereby can achieve a higher processing throughput.
We realized a distributed controller based on DRS
and evaluated it with Mininet. Experimental results
demonstrated the efficiency of consistency check and
rule update, and also showed that DRS outperforms
native Floodlight and ONOS in terms of flow setup
time and processing throughput.

References
Berde, P., Gerola, M., Hart, J., et al., 2014. ONOS: towards

an open, distributed SDN OS. Proc. 3rd Workshop on
Hot Topics in Software Defined Networking, p.1-6.
http://dx.doi.org/10.1145/2620728.2620744

Dittrich, D., 1999. The DoS Project’s ‘Trinoo’ Distributed
Denial of Service Attack Tool. University of Wash-
ington, USA. Available from http://staff.washington.
edu/dittrich/misc/trinoo.analysis.txt.

Dixit, A., Hao, F., Mukherjee, S., et al., 2013. Towards an
elastic distributed SDN controller. ACM SIGCOMM
Comput. Commun. Rev., 43(4):7-12.
http://dx.doi.org/10.1145/2534169.2491193

Floodlight Project, 2016. Floodlight Controller. Available
from http://www.projectfloodlight.org/floodlight/.

Gude, N., Koponen, T., Pettit, J., et al., 2008. NOX: towards
an operating system for networks. ACM SIGCOMM
Comput. Commun. Rev., 38(3):105-110.
http://dx.doi.org/10.1145/1384609.1384625

Karger, D., Lehman, E., Leighton, T., et al., 1997. Consistent
hashing and random trees: distributed caching protocols
for relieving hot spots on the World Wide Web. Proc.
29th Annual ACM Symp. on Theory of Computing,
p.654-663. http://dx.doi.org/10.1145/258533.258660

Katta, N.P., Rexford, J., Walker, D., 2013. Incremental con-
sistent updates. Proc. 2nd ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, p.49-54.
http://dx.doi.org/10.1145/2491185.2491191

Koponen, T., Casado, M., Gude, N., et al., 2010. Onix: a
distributed control platform for large-scale production
networks. Proc. 9th USENIX Symp. on Operating
Systems Design and Implementation, p.1-6.

Krishnamurthy, A., Chandrabose, S.P., Gember-Jacobson,
A., 2014. Pratyaastha: an efficient elastic distributed
SDN control plane. Proc. 3rd Workshop on Hot Topics
in Software Defined Networking, p.133-138.
http://dx.doi.org/10.1145/2620728.2620748

Lakshman, A., Malik, P., 2010. Cassandra: a decentralized
structured storage system. ACM SIGOPS Oper. Syst.
Rev., 44(2):35-40.
http://dx.doi.org/10.1145/1773912.1773922

Lantz, B., Heller, B., McKeown, N., 2010. A network in a
laptop: rapid prototyping for software-defined networks.
Proc. 9th ACM SIGCOMM Workshop on Hot Topics
in Networks, Article 19.
http://dx.doi.org/10.1145/1868447.1868466

Mahajan, R., Wattenhofer, R., 2013. On consistent updates
in software defined networks. Proc. 12th ACM Work-
shop on Hot Topics in Networks, Article 20.
http://dx.doi.org/10.1145/2535771.2535791

McGeer, R., 2012. A safe, efficient update protocol for
OpenFlow networks. Proc. 1st Workshop on Hot
Topics in Software Defined Networks, p.61-66.
http://dx.doi.org/10.1145/2342441.2342454

McKeown, N., Anderson, T., Balakrishnan, H., et al., 2008.
OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Comput. Commun. Rev., 38(2):69-
74. http://dx.doi.org/10.1145/1355734.1355746

Merkle, R.C., 1988. A digital signature based on a conven-
tional encryption function. In: Pomerance, C. (Ed.),
Advances in Cryptology, p.369-378.
http://dx.doi.org/10.1007/3-540-48184-2_32

NOXRepo, 2016. The POX Controller. Available from
http://www.noxrepo.org/.

OpenDaylight Project, 2016. The OpenDaylight Controller.
Available from https://www.opendaylight.org/.

Ousterhout, J., Agrawal, P., Erickson, D., et al., 2010. The
case for RAMClouds: scalable high-performance storage
entirely in DRAM. ACM SIGOPS Oper. Syst. Rev.,
43(4):92-105.
http://dx.doi.org/10.1145/1713254.1713276

Paul, S., 2014. Software Defined Application Delivery Net-
working. PhD Thesis, School of Engineering & Applied
Science, Washington University in St. Louis, USA.
http://dx.doi.org/10.7936/K7CJ8BJH

646 Wang et al. / Front Inform Technol Electron Eng 2016 17(7):634-646

Perešíni, P., Kuzniar, M., Vasić, N., et al., 2013. OF.CPP:
consistent packet processing for OpenFlow. Proc. 2nd
ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, p.97-102.
http://dx.doi.org/10.1145/2491185.2491205

Pfaff, B., Pettit, J., Amidon, K., et al., 2009. Extending Net-
working into the Virtualization Layer. Available from
http://openvswitch.github.io/papers/hotnets2009.pdf.

Reitblatt, M., Foster, N., Rexford, J., et al., 2012. Ab-
stractions for network update. Proc. ACM SIGCOMM
Conf. on Applications, Technologies, Architectures, and
Protocals for Computer Communication, p.323-334.
http://dx.doi.org/10.1145/2342356.2342427

Ryu SDN Framework Community, 2014. The Ryu Controller.
Available from http://osrg.github.io/ryu/.

Shin, S., Yegneswaran, V., Porras, P., et al., 2013. AVANT-
GUARD: scalable and vigilant switch flow management
in software-defined networks. Proc. ACM SIGSAC

Conf. on Computer & Communications Security, p.413-
424. http://dx.doi.org/10.1145/2508859.2516684

Stoica, I., Morris, R., Karger, D., et al., 2001. Chord: a
scalable peer-to-peer lookup service for Internet appli-
cations. ACM SIGCOMM Comput. Commun. Rev.,
31(4):149-160.
http://dx.doi.org/10.1145/964723.383071

Tootoonchian, A., Ganjali, Y., 2010. HyperFlow: a dis-
tributed control plane for OpenFlow. Proc. Internet
Network Management Conf. on Research on Enterprise
Networking, p.1-6.

Yeganeh, S.H., Ganjali, Y., 2012. Kandoo: a framework for
efficient and scalable offloading of control applications.
Proc. 1st Workshop on Hot Topics in Software Defined
Networks, p.19-24.
http://dx.doi.org/10.1145/2342441.2342446

	Introduction
	Motivation
	Controller capacity saturation
	Proactive and reactive rule installation

	Design of distributed rule store
	Architecture
	Rule generation and update
	Rule partition
	Request processing
	Consistency check
	Controller assignment

	Implementation and evaluation
	Implementation
	Setup and methodology
	Consistency check efficiency
	Flow setup latency
	Processing throughput
	Load balance
	Rule update overhead

	Related work
	Controller capacity saturation
	SDN controllers
	Distributed SDN controllers
	SDN controller migration

	Conclusions

