
Cutting Your Cloud Computing Cost for
Deadline-Constrained Batch Jobs

Min Yao∗, Peng Zhang†, Yin Li∗, Jie Hu∗, Chuang Lin∗ Xiang-Yang Li‡,
∗Tsinghua National Laboratory for Information Science and Technology (TNList)
Department of Computer Science and Technology, Tsinghua University, Beijing

†Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an
‡Department of Computer Science, Illinois Institute of Technology, Chicago

Abstract—Many web service providers use commercial cloud
computing infrastructures like Amazon for flexible and reliable
service deployment. For these web service providers, the cost of
cloud computing usage becomes a big part of their IT department
cost. Facing the diverse pricing models including on-demand,
reserved, and spot instance, it is difficult for web service providers
to optimize their cost.

This paper introduces a new cloud brokerage service to help
web service providers to minimize their cloud computing cost for
deadline-constrained batch jobs, which have been a significant
workload in web services. Our cloud brokerage service associates
each batch job with deadline, and always tries to use cheaper
reserved instances for computation to maintain a minimum cost.
We achieve this with the following two steps: (1) given a set of
jobs’ specifications, determine the scheduling of jobs; (2) given
the scheduling and pricing options, find an optimal instance
renting strategy. We prove that both problems in two steps are
computation intractable, and propose approximation algorithms
for them. Trace-based evaluation shows that our cloud brokerage
service can reduce up to 57% of the cloud computing cost.

I. INTRODUCTION

Cloud computing, e.g., Infrastructure-as-a-Service (IaaS),
enables customers to obtain the computing resources (in the
form of virtual machines) in an on-demand way. As a result,
cloud computing customers can save the cost incurred by one-
time infrastructure investment as well as daily maintenance.

To meet the requirements of a wide variety of customers,
major IaaS providers (e.g., Amazon Web Services, Google
Compute Cloud, Microsoft Windows Azure) are offering di-
verse pricing options. Common pricing options include (i) on-
demand instance, (ii) reserved instance, and (iii) spot instance.
When using on-demand instance, customers pay their hourly
usage by without long-term commitment. Reserved instance,
on the other hand, let users make a one-time payment for
instance reservation, and enjoy a lower hourly charge when
using these instances. For spot instance, users can bid for
the unused capacity in the cloud, and whenever the bidding
price is no lower than the spot price, the users can get the
spot instances for the next hour. While the instance would be
terminated abruptly when the user’s bid falls below the spot
price.

Recently, many cloud brokerage service [1] emerged to
help IaaS customers to reduce their cost by intelligently using
different pricing options. It is anticipated that global cloud
brokerage market will grow from $1.57 billion in 2013 to

$10.5 billion by 2018 [1]. However, the intelligence inside
these cloud brokerage service is little known to the academy.
In addition, we are unaware of any public cloud brokerage
service for batch jobs, which is currently a significant part
of computing workload in web services. Examples of batch
jobs include MapReduce/DryadLINQ jobs, web search index
update, monte carlo simulations, software testing, etc. Most of
the batch applications have large computing workload but no
real-time requirement, indicating that the computation can be
spread over a finite time window specified by the job arrival
time and due date. We term these jobs as deadline-constrained
batch jobs, define its slackness as the ratio of the time window
and earliest finish time, and defines its spare time as the
difference between the due date and earliest finish time. For
example, if a job requests a instance for 4 hours and its
deadline constraint is 6 hours, the slackness and spare time
of the job is 3/2 and 2 respectively.

Different from the traditional resource management sys-
tem within cloud providers [12][13], our proposed brokerage
service does not need to maintain a large pool of instances
in advance. Instead, our broker accepts deadline-constrained
batch jobs from web service providers during a certain period,
and then give an optimal renting strategy, which minimizes
the total cost. Though both of the reserved instance and spot
instance can be used to reduce cost, however, here we only
choose to use reserved instances (which also has a lot of
different options). The reasons are as follows. (i) spot price
is determined by the provider according to undisclosed rules,
and thus very hard to predict. (ii) The heuristic method, which
launches spot instances first and then uses on-demand instance
when spot instances fail will introduce extra delay to jobs. (iii)
The unexpected termination of the running spot instances is
terrible for users if they do not backup job’s status frequently.

Even without usage of spot instances, we can still signifi-
cantly reduce the cloud cost by properly choosing the reserved
instances. For example, a 3-year term reserved instance plan
can save up to 65% of the total cost [8]. Our basic idea
is to minimize the peak demand of instances by spreading
the computation load in a time window. The smaller the
peak demand, the more opportunities for exploiting long-term
reserved instance. Take Fig. 1 as an example, there are four
jobs with deadline constraints. The straightforward approach
would need 2 instances, while our approach can reduce the

(a) (b) (c)
Fig. 1. A motivating example of cloud brokerage service: (a) four jobs
with different deadlines arrive; (b) the straightforward approach: two instances
needed; (c) taking job deadline into account: only one instance needed.

Fig. 2. Framework of our cloud brokerage service.

number to 1, thereby uses only one long-term instance.
In sum, our main contribution is three-fold:

1) We introduce a new cloud brokerage service, consisting
of a scheduling module and a reservation module, to help
reduce the cloud cost incurred by deadline-constrained
batch jobs.

2) We formulate these two modules as two separate opti-
mization problems, and show they are both very hard to
solve. To make these problems computation tractable,
we propose heuristic algorithms to approximately solve
them.

3) We use real traces collected from one of Google’s
large-scale computing clusters, and conduct extensive
simulations to demonstrate that our cloud broker service
can significantly reduce the cost incurred by deadline-
constrained batch jobs.

The rest of this paper is structured as follows. A brief dis-
cussion of the related work is presented in Section II. System
overview and problem formulations are given in Section III.
Section IV presents our scheduling algorithm and reservation
algorithm to approximately solve the problem. Section V
reports the evaluation of the algorithms with the real dataset
from Google cluster-usage trace. Section VI concludes this
paper.

II. RELATED WORK

Cloud brokerage has become a hot topic in both industrial
and academic field. A lot of companies running cloud broker-
age services emerged these years [1]. All these commercial
cloud brokerage service platforms do not provide the specific
service for deadline constrained batch jobs. Recently, there are
also several research effort on cloud brokerage. For example,
Wieder et al. [3] proposed Conductor that help user choose
cloud services to deploy MapReduce computations in the
cloud. Zhao et al. [4] developed a resource rental planning

for elastic applications with the computational and storage re-
sources in the cloud market to reduce the operation costs. Zafer
et al. [5] designed a dynamic bidding policy for spot instances
in order to minimize the average cost of a job with deadline
constraint. Although the cloud brokerage services of [3]-[5]
guarantee the deadline constraint for the job requests, they
accommodate individual user job requests separately. Song et
al. [6] designed a bidding strategy from a cloud brokerage’s
perspective, where the brokerage receives job requests from
cloud users and leverages the opportunistic spot instances to
maximize the its revenue. Wang et al. [7] proposed a cloud
brokerage that receives job requests and exploits benefits of
long-term instances reservation to minimize its service costs.
Jain et al. [2] studied an online learning algorithm for resource
allocation incorporating history of spot instances and workload
characteristics. However, the cloud brokerages in [6][7][2] are
not suitable for deadline constrained batch jobs. Our cloud
services brokerage exploits the slackness of jobs to aggregate
them, so as to enjoy the benefits of cheaper reservation options
and resource multiplexing gains.

Our brokerage service is different from the resource man-
agement system within cloud providers. Both of the resource
management systems in [12][13] manage a large pool of
computation resources and discuss how to efficiently utilize the
computation resources to fulfill the user requests and reduce
the cost of the cloud providers. However, our brokerage service
doesn’t need to reserve a pool of instance in advance.

The work of [14][15] are similar to the scheduling module
of our brokerage service. The strip packing with slicing
problem [14] is different since it didn’t consider the deadline
constraints of each job. [15] proposed a method to check
whether there exist a preemptive schedule on m machines that
complete n jobs within its release time and deadline, but this
method can only applied to single-task job.

III. PROBLEM STATEMENT AND FORMULATION

A. Problem Statement

Our problem setup focuses on the web service providers
who submit their batch jobs demand estimates over a certain
period of time. Specially, the time horizon is divided into T
time slots, which represents an time interval of one hour in
IaaS cloud. In our model, each batch job is characterized by a
tuple with four parameters Ri = (Di, ci, si, di), where Di is
the total computation resource demand in instance-hour unit,
ci is the concurrency requirement which denotes the degree
of parallelism, i.e., the number of instances that should be
simultaneously assigned to a job, si and di denote the start
time and due date of a job respectively. Our brokerage should
make sure that a job is completed in finite time window [si, di].
Thus, the job i is said to be active at time t if si ≤ t ≤ di and
the instances assigned to it so far are less than Di.

B. System Framework

As shown in Fig. 2, our cloud brokerage service consists of
two components: the scheduling module and the reservation
module. The scheduling module exploits the slackness of

Parameter Meaning
M Total number of deadline-constrained batch jobs
Vt Total number of instances needed at time t
xit Number of instances allocated to job i at time t
It Set of jobs that can be allocated instances at time t
τi Reservation period for option-i reserved instance
rit Number of option-i reserved instance rented at time t
ui
t Number of option-i reserved instances used at time t

ot Number of on-demand instances used at time t
γi One-time charge for option-i reserved instance
αi Hourly charge for option-i reserved instance
β Hourly charge for on-demand instance

TABLE I
Notations used in this paper.

job deadlines for possible aggregation, in order to minimize
the peak instance demand over a given period. Recall the
example in Fig. 1, the scheduling model aims to achieve (c)
where the peak instance demand is 1. Given the aggregated
instance demand calculated by the scheduling module, the
reservation module aims to find an optimal renting strategy to
minimize the instance rental cost. In the following, we present
the formulations for the scheduling module and reservation
module, respectively.

C. The Scheduling Module

The main function of scheduling module is to increase the
opportunity of exploiting long-term reserved instance, which
has a lower hourly charge, through two ways: (i) Take full
advantage of slackness specified by batch jobs to aggregate
them and smooth out individual bursts; (ii) Multiplex an
instance in time horizon as much as possible. The goal of
scheduling module is to minimize the maximum instances
needed per hour. We formulate the aggregation mechanism
of scheduling module as the following optimization problem.
Notations used in the following are given in Table I.

minimize max
0≤t<T

Vt =
∑
i∈It

xit (1)

subject to
di−1∑
j=si

xij ≥ Di, ∀i ∈ [1,M]

xit ∈ {0, ci}, ∀i ∈ [1,M], ∀t ∈ [si, di)

xit = 0, ∀i ∈ [1,M], ∀t /∈ [si, di)

The first set of constraints mean the total number of instances
should be no less than the total requests of all jobs; the
second set of constraints mean the concurrency requirements
of each job should be met; and the third set of constraints
mean instances are only assigned to a job which is during
its time window (the time between its arrival and deadline).
Optimization problem (1) is a special case of 0-1 integer linear
program with many variables, whose number scales with the
number of batch jobs and the time window length of each job.

Theorem 1. The optimization problem (1) is NP-Complete.

The proof is given in Appendix A.

D. The Reservation Module

Given the aggregated demand Vt obtained by the scheduling
module, the reservation module is responsible for determining
the combinational use of on-demand instance and various
options of reserved instance. Most cloud service providers
offer a series of reservation options. For example, Ama-
zon provides three options: light(low-usage), medium(middle-
usage), and heavy(high-usage) instances [8]. A higher-usage
option has a higher one-time upfront charge, while a lower
hourly charge, and vice versa. For each option, Amazon offers
a one-year term and a three-year term. Suppose there are w
kinds of reservation options {(γi, αi, τi), i ∈ [1, w]}, where
γi denotes the one-time upfront charge, αi denotes the hourly
usage charge, and τi denotes the length of reservation period.
Then we can model this reservation problem as the following
optimization problem. Notations used in the following are
given in Table I.

minimize
T−1∑
t=0

(
w∑
i=1

ritγi +
w∑
i=1

ui
tαi + otβ) (2)

subject to ui
t ≤

t∑
j=t−τi+1

rij , ∀t ∈ [0, T − 1], ∀i ∈ [1, w]

Vt ≤
w∑
i=1

ui
t + ot, ∀t ∈ [0, T − 1]

rit, u
i
t, ot ≥ 0, ∀t ∈ [0, T − 1], ∀i ∈ [1, w]

The objective function of optimization problem (2) is to
minimize the total rental cost, which consists of three parts:
one-time upfront charges, hourly charges incurred by reserved
instance usage, hourly usage charges incurred by on-demand
instance usage. The first set of constraints mean the usage
number of reserved instance should not be greater than the
number of reserved instance that are still effective. The second
set of constraints make sure that the usage number of reserved
and on-demand instances satisfies the aggregated demand
curve. The last set of constraints put limits on variables.

The optimization problem (2) can be seen as an integer
linear program (ILP) with many variables, and is thus very
difficult to solve. An straightforward method is dynamic
programming, while the complexity is exponential even in the
case of single reservation option. For a detailed analysis on
the computation complexity of problem (2), please refer to
Appendix B.

IV. ALGORITHMS

As shown in the Section III, the two optimization prob-
lems corresponding to the scheduling module and reservation
module are both very difficult to solve. Thus, in this section
we propose a heuristic scheduling algorithm for optimization
problem (1) and a greedy reservation algorithm for optimiza-
tion problem (2).

A. Scheduling Algorithm

The basic idea of scheduling algorithm is to search for
the maximum instances needed per hour, Vmax, as small as

(a) (b) (c)

Fig. 3. Scenarios for the proof. The red part denotes the allocation can’t be
moved. The yellow part denotes the allocation can be moved.

possible using binary search. The initial lower and upper
bound are set to be 1 and

∑
i ci, respectively. For any given

Vmax ∈ [1,
∑

i ci], we use a function verifyK to check whether
the given Vmax is suitable for all job requests. verifyK does
the following work: it first select the set of jobs that are still
active at time t, denoted as JAt; then it calls the function
chooseJobsToServe to pick the set of jobs with smallest
spare time, denoted as JCt, and assigns the Vmax instances
to jobs in JCt. If there exists a job whose spare time is equal
to 0, but not in JCt, then we increase the lower bound of
Vmax. If the Vmax can meet the demand of all jobs, then we
decrease the upper bound.

In the procedure of chooseJobsToServe, we can choose the
job with the smallest spare time one by one. However, this
straightforward method is inefficient. For example, suppose
there are four jobs with the same spare time = 1, and their
concurrency requirements are c1 = 1, c2 = 2, c3 = 3, c4 = 4.
Now considering Vmax = 5, the above method may pick up
the first and second jobs at time t, and the last two jobs
at time t + 1. However, Vmax = 5 is too small for time
t + 1. If we pick up the first and last jobs at time t and the
second and third jobs at time t+1, Vmax = 5 can be enough
for both. Thus, in the procedure of chooseJobsToServe, we
choose the jobs from first smallest spare time level, then the
second level, etc. In each level, we call exactPickup, which is
similar with knapsack problem, to pick up the proper set of
jobs and put them into the set JCt. Algorithm 1 describes the
main framework of aggregation algorithm, whose computation
complexity is O(MT (

∑M
i=1 ci) log(

∑M
i=1 ci)).

Proposition 1. Algorithm 1 is 2-competitive, meaning that for
any job requests, the maximum number of instances needed per
hour Vmax obtained by Algorithm 1 is no more than twice the
optimal solution Vopt.

Proof: We will use the rule of converse-negative propo-
sition for the proof of Proposition 1. The converse-negative
proposition is stated as: if there is not a schedule in Algorithm
1 with a given Vmax, then the optimal solution Vopt must be
greater than Vmax/2. For a given Vmax, suppose Algorithm 1
stops at time t ∈ [0, T − 1]. As shown in Fig. 3, the instances
allocation of jobs has two types: yellow part denotes the
allocation can be moved, and red part denotes the allocation
can’t be moved. If the red part at time t is greater than Vmax/2,
as shown in Fig. 3(a), the Vopt must be greater than Vmax/2.
If the red part for any time t′ ∈ [0, t] is not more than Vmax/2,
as shown in Fig. 3(b), we need to move some of yellow parts

Algorithm 1: Scheduling Algorithm
Input: R: job requests {Ri}(i ∈ [1,M])
Output: Vmax: maximum instances needed per hour
V: number of instances needed per hour {Vj}(j ∈ [0, T))

1 Vlow ← 1; Vhigh ←
∑M

i=1 ci; Vmax = (Vlow + Vhigh)/2;
2 while Vlow ≤ Vmax ≤ Vhigh do /* Binary search */
3 Modify Vlow(or Vhigh) and Vmax based on the return value

of verify(Vmax, R, V);

4 Function verifyK(k, R, V): bool
5 New a 1× T vector V′ with value 0;
6 for t← 0 to T-1 do
7 Clear the sets JAt and JCt;
8 Delete jobs that have been finished, i.e., Di = 0;
9 JAt ← select jobs that are still active at time t;

10 if chooseJobsToServe(JAt, JCt, k, t)=false then
// exist a job /∈ JCt spare_time=0

11 return false;
12 else
13 Dj ← Dj − cj , (∀ job j ∈ JCt);
14 Vt ←

∑
j∈JCt

cj ;

15 V← copy the set V′;
16 return true;

17 Function chooseJobsToServe(JAt, JCt, k, t): bool
18 while k > 0 & JAt ̸= ∅ do
19 candidate← Choose jobs in JAt with smallest

spare time;
20 exactP ickup(candidate, pickup, k);
21 if spare time = 0 & candidate−pickup̸= ∅ then
22 return false;
23 else
24 JCt ← JCt ∪ pickup;
25 k ← k −

∑
i∈pickup ci;

26 JAt ← JAt − candidate;

27 return true;

at time t, such as the no. 1 yellow part. Notes that the yellow
parts at time t can only be moved forward and there doesn’t
exist a time t′ ∈ [0, t − 1] that can directly accept the no.
1 yellow part, we need to find some yellow parts at time
t′ ∈ [0, t − 1], whose due dates are less than t, move them
to a later time before their due dates and make a room for no.
1 yellow part. For example in Fig. 3(b), we can move no. 2
yellow part to time t-1 and move no. 1 yellow part to time
t-2, just like Fig. 3(c). After the adjustment, if the instance
allocation is greater than Vmax/2 for all t′ ∈ [0, t], the Vopt

must be greater than Vmax/2. Otherwise, there exists some
moments at which instance allocation is less than Vmax/2.
In Fig. 3(c), we suppose Vt−3 < Vmax/2. However, it is
impossible to move some yellow parts at time t′ ∈ [t − 2, t]
to time t-3 since algorithm 1 determines that those jobs either
have been allocated instance at time t-3 or doesn’t start at
time t-3. Therefore, the Vopt must be greater than Vmax/2.
Summarizing the analysis above, we can conclude that the
converse-negative of Proposition 1 is true. Thus, Proposition
1 is proven.

B. Reservation Algorithm

After the aggregated demand curve Vt is generated from
scheduling module, we divide it into levels, as shown in Fig.
4, which contains five levels. The main idea of our greedy
renting algorithm is to calculate the optimal renting strategy
from top level to bottom level with dynamic programming.
We use dlt = {0, 1} to denote whether there is a demand at
level l at time t, clt =

∑t
i=0 d

l
i to denote the accumulative

demand at level l from time 0 to time t, and Li
t to denote

the number of option-i reserved instances which are rented at
upper layers and left over to level l if they are not used at
time t. Then we define Cl

t to be the minimum cost of serving
demand from time 0 to time t at level l. For every level, the
recursive Bellman equations are

Cl
t = min{ min

i∈[1,w]
{Cl

t−τi + γi + (clt − clt−τi)αi}, Cl
t−1 +ml

t}

(3)

ml
t =

0 if dlt = 0
mini:Li

t>0 αi if dlt ̸= 0 and ∃i ∈ [1, w] : Li
t > 0

β if dlt ̸= 0 and ∀i ∈ [1, w] : Li
t = 0

(4)

which choose the minimum cost among different choices. The
first set of choices are to optimally serve the demand up to time
t− τi and rent a option-i reserved instance. The second set of
choices are to use either reserved instance left over from upper
levels or on-demand instance. We calculate the minimum cost
at level l from time 0 to T − 1. After the Cl

T−1 is attained,
we need to find a time path, such as (t0 = 0, t1, t2, · · · , tn =
T − 1) that follows equation (3) to get Cl

T−1.
If the distance between two adjacent time steps tj+1 and tj

is equal to the reservation period of some reserved instance,
e.g. τi, then we need to rent a option-i reserved instance at
time tj + 1 and update the left over matrix during the period
(tj , tj + τi] as

ritj+1 = ritj+1 + 1; (5)

Li
k = Li

k + 1− dlk, ∀k ∈ (tj , tj + τi];

where r={rit}w×T is used to denote the number of option-i
reserved instances that should be rented at time t.

For the case of tj+1−tj = 1, if dtj+1 = 1, then we use either
the reserved instance left over from upper levels or the on-
demand instance as the rules shown in (6); otherwise, nothing
is done since there is no demand at time tj+1 at level l. We
define pt = {i|i ∈ [1, w]&αi = mink∈[1,w]&Lk

t >0 αk}, which
means the type of left over reserved instance with cheapest
hourly usage fees.{

L
ptj+1

tj+1
= L

ptj+1

tj+1
− 1 if ∃i ∈ [1, w] : Li

tj+1
> 0

otj+1 = otj+1 + 1 if ∀i ∈ [1, w] : Li
tj+1

= 0
(6)

where o={ot}T is used to denote the number of on-demand
instance that should be rented at time t.

The details of the reservation algorithm are presented as
Algorithm 2. The computation complexity of the algorithm 2
is O(lmaxwT), and the space complexity is O(wT), which

Fig. 4. Leveling of aggregated demand curve.

Algorithm 2: Reservation Algorithm
Input: V: The aggregated demand curve {Vt};
β, {(γi, αi, τi)|i ∈ [1, w]}: Parameters of pricing options
Output: Optimal renting plan r = {rit}w×T and o = {ot}

1 lmax ← max{Vi};
2 New a matrix L={Li

t}w×T to record the number of reserved
instances left over from upper levels;

3 for l← lmax to 1 do
4 Generate demand vector and cumulative demand vector at

level l: dl={dlt}, cl={clt};
5 for t← 0 to T-1 do
6 Use eq.(3)(4) to calculate the optimal Cl

t ;

7 t← T − 1;
8 while t > 0 do
9 if ∃i ∈ [1, w] : Cl

t = Cl
t−τi + γi + (clt − clt−τi)αi then

10 Use eq.(5) to update r and L with tj = t− τi;
11 t← t− τi;
12 else
13 if dlt = 1 then
14 Use eq.(6) to update o and L with tj+1 = t;

15 t← t− 1;

are better than the exponential level required in the original
dynamic programming method.

Proposition 2. The difference of total cost between the optimal
solution and the solution generated from Algorithm 2 is not
more than ((τmax−1)(β−αmax)−γmax)lmax, where αmax =
max1≤i≤w αi, τmax = max1≤i≤w τi.

Proof: Given a level l, suppose the optimal solu-
tion for this level is composed of k+1 time fragments
{(t0, t1, ϕ0), (t2, t3, ϕ1), · · · , (t2k, t2k+1, ϕk)}, (ϕi ∈ [0, w]).
The symbol ϕi attached to a fragment represents the demands
during the fragment are all serviced with the corresponding
instance, e.g., ϕi = 0 represents on demand instance, ϕi > 0
represents option-ϕi reserved instance. Except the last frag-
ment, the length of fragment with symbol ϕi > 0 must be
equal to τϕi . And based on Algorithm 2, we can get the
optimal value for Cl

t when t = t2i+1, (0 ≤ i < k). If
t2k+1−t2k = τϕk

, then we can get the optimal value for Cl
T−1.

Otherwise, if t2k+1− t2k < τϕk
, the difference between Cl

T−1

derived from Algorithm 2 and the optimal value is not more
than (τϕk

− 1)(β − αϕk
) − γϕk

. Since there are lmax levels,
the difference between Algorithm 2 and optimum is not more
than ((τmax − 1)(β − αmax)− γmax)lmax.

Pricing Model Option Upfront Hourly Break-even
ID Point

On-demand 0 $0 $0.060 \

Light
1month 1 $5.014 $0.034 26.78%
2month 2 $6.452 $0.0305 15.19%
3month 3 $7.890 $0.027 11.07%

Medium
1month 4 $11.425 $0.021 40.69%
2month 5 $14.548 $0.019 24.64%
3month 6 $17.671 $0.017 19.03%

Heavy
1month 7 $13.890 $0.014 41.94%
2month 8 $17.509 $0.013 25.87%
3month 9 $21.123 $0.012 20.37%

TABLE II
Pricing model of on-demand and Light/Medium/Heavy 1/2/3 month terms

reserved m1.small instance.

V. TRACE-BASED EVALUATION

In this section, we first introduce the evaluation setup,
including the Amazon EC2 pricing options and Google cluster-
usage trace. Then, we conduct a series of evaluations, and
analyze the results to demonstrate the of effectiveness of our
cloud brokerage service.

A. Setup

Amazon EC2 Pricing Options. Different IaaS provider offers
different kinds of instance services. In this paper, we mainly
focus on the instance services provided by Amazon Web
Service. Amazon has offered 23 types of EC2 instances [8],
which offers different compute, memory, and storage capabil-
ities, to users. For each type, there are three kinds of pricing
options, including on-demand instance, reserved instance and
spot instance. Here, we focus on on-demand instance and
reserved instance. For the simpleness, we only consider single
instance type: m1.small. From the Amazon website, we know
that the on-demand price of m1.small in US East is $0.060
per hour. Amazon provides three reserved instance types to
address users’ projected utilization of the instance: Heavy
Utilization, Medium Utilization, and Light Utilization. And
in each utilization level, there are 2 terms: 1 year term and
3 year term. However, using the Reserved Instance Market-
place platform, we have the flexibility to purchase Reserved
Instances from AWS Reserved Instance Marketplace Sellers
for terms ranging between 1 month to 36 months (depending
on available selection) [10]. Since the Google cluster usage
trace only spans one month, we only consider month-level
reserved instances. Based on the upfront fees and hourly fees
for 1 and 3 year terms listed in AWS website, we assume 1, 2,
and 3 month terms as shown in table II, which are based on the
break-event point of 1 and 3 year terms. The break-event point
denotes the smallest ratio between execution period over total
period, by which the reserved instance can benefit compared
to the on-demand instance. For example, if we rent a 1 month
term light utilization m1.small, we will benefit from it when
the usage hours are more than 192 hours, which is 26.78% of
one month term.
Google Cluster-Usage Trace. Workload traces in public IaaS
clouds are often confidential. Recently, Google released lim-
ited system traces from one of their production clusters. This

trace is about scheduler request and utilization data across a
large-scale cluster with 12583 machines over 29 days. This
trace has been widely used in the academic research. The
trace contains 180GB of resource demand/usage information
of 933 users, 650 thousands of jobs, 25 millions of tasks. Tasks
are organized into jobs. A job is comprised of one or more
identical tasks with the same resource requirement. Although
Google cluster usage trace is not a real workload of public
IaaS cloud, it reflects the computation requirements of Google
engineers and services, which can represent demands of cloud
users to a certain extent.

Since the instance billing cycle is hour level, we select
39068 long jobs spanning longer than 1 hour from the trace
to evaluate the performance of our cloud brokerage service.
Because the data has been obfuscated to hide exact machine
configurations, exact number of CPU cores and bytes of
memory are unavailable; instead, CPU and memory size mea-
surements are normalized to the configuration of the largest
machines. The 12583 machines in the Google cluster consist
of there kinds of CPU configuration: 0.25, 0.5 and 1. Since
92.7% of machines has CPU configuration 0.5, we suppose
the instance m1.small has the same computing capacity as the
Google machine with 0.5 CPU configuration. Among all the
39068 jobs, 39.8% of jobs have more than one task. 10.73% of
these multiple-task jobs have constraints on different machine
requirement, which indicates that a task must be scheduled
to execute on a different machine than any other currently
running task in the same job.

B. Results and Analysis

In the evaluation, we first need to determine how many
instance-hours would each job require if it were to execute
in a public IaaS cloud. Since there exist single-task jobs and
multiple-task jobs, we would reschedule the jobs into instances
with the rules: for single-task job, the tasks within the same job
are consolidated into the same instance as much as possible;
Whereas, for multiple-task job, tasks which can not share the
same machine (e.g., tasks of MapReduce) are scheduled to
different instances.
Effectiveness of Scheduling Module. Fig. 5 shows the actual
number of instances needed per hour under different values
of slackness, as defined before. When slackness = 1, the
demand curve is highly fluctuant since the cloud brokerage
should meet the demands of all jobs immediately when re-
ceiving the job requests. As the value of slackness increases,
our scheduling module with exactPickup can decrease the
maximum instances needed per hour, thereby smooth aggre-
gated demand curve (we will show that this will translate into
lower prices in the next evaluation). In real scenarios, different
customers may specify different slackness for their jobs. Thus,
we also consider the case of slackness ∈ rand[1, 2], meaning
that the slackness for each job is chosen uniformly at random
between 1 and 2. We can observe that our broker service is
still effective in this case.
Cloud Cost Reduction. To demonstrate the cost reduction
of our cloud brokerage service, we conduct 6 experiments as

Experiment ID Method Used Slackness
1 Straightfoward Reservation N/A
2 Per-Job Optimum Reservation N/A
3

Our Cloud Brokerage Service

1
4 1.5
5 2
6 rand(1,2)

TABLE III
Specification of the six experiments.

0 200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6
x 10

4

Running time (h)

of

 in
st

an
ce

s
ne

ed
ed

 p
er

 h
ou

r

s=1
s=1.5
s=2
s=rand[1,2]

Fig. 5. The number of instances per hour obtained by our reservation module
under different slackness s.

specified in table III. In the Exp.1, we use a straightforward
reservation strategy that uses on-demand instances for all jobs.
In Exp.2, we use a per-job optimum reservation strategy that
considers each job separately and chooses the proper option
of instance based on the instance-hours needed by each job.
Exp.3-6 corresponds to the cost when using our brokerage
service under different values of slackness.

From Fig. 6(a) we observe that the per-job optimum reserva-
tion strategy is better than straightforward reservation strategy,
by reducing the cost by around 32%. Exp.3 shows that even all
jobs are tight (with slackness being 1), our brokerage service
still performs better than the per-job optimum approach, reduc-
ing the total cost by 42% compared with the staightforward
reservation. We can also observe that more cost saving can
be achieved with the increase of job slackness. Even under
the case of slackness = rand[1, 2] (Exp.6), our brokerage
service can still achieve around 51% saving.

Fig. 6(c) and Fig. 6(b) shows the number of instances rented
and the number of instance actually used. As we can see, none
of Exp.1-6 use the option-2, option-4, option-5, option-6 or
option-9 instance. In Fig. 6(b), we observe that the cost saving
ratio increases from Exp.1 to Exp.5, since the instance usage
of longer-term (and thus cheaper) option increases. Although
Exp.4 and Exp.5 have the same amount of usage of option-8
instance, the number of option-8 reserved instance rented in
Exp.4 is 7699 more than Exp.5, as shown in Fig. 6(c), and
thus has a lower cost saving ratio. By comparing the results
of Exp.3-5 in Fig. 6(b), we are confirmed the effectiveness of
the the scheduling module, that is the smoother the aggregated
demand curve is, the more opportunities for using cheaper
reserved instances.

We try different values of slackness to show its effect on
the performance of our brokerage service. In Fig. 6(d), we can
see that the cost saving ratio becomes higher with the increase

of slackness. The cost saving ratio gradually approaches the
upper bound of 65%, which can only be achieved by solely
reserving the option-9 instances, and fully utilize them during
the reservation period.
Discussion: Mutual Benefits for Brokers and Users The
above results show that our cloud brokerage service can reduce
the cost of IaaS cloud usage. To attract more cloud customers
to use our brokerage service, we can offer discounts. As shown
in Fig. 6(a), the per-job optimum strategy incurs a total cost
of $1,268,603.527. If we can offer 25% discount compared
with the original pricing options (including on-demand and
reserved instance as provided by Amazon Web Service), the
total cost of per-job optimum reservation strategy will drop
to $951,452.645. In the case of slackness = rand[1, 2], the
total cost incurred by our brokerage service is $900,570.842.
It means that our brokerage service can rent the instances
with the original price options from Amazon Web Service, and
charge the users with 25% discount, and we can still gain a
profit of $50,881.803, when slackness = rand[1, 2]. Besides,
the Amazon Web Service also provides reserved instance
volume discounts [13], which can further reduce the upfront
fees and usage fees for future renting of reserved instance
after a user has rented a large number of reserved instance in
an AWS region. So there is a large space for our brokerage
service to offer discount for users, while still making profits.

VI. CONCLUSION

In this paper, we proposed a new cloud brokerage service
to minimize the cloud cost incurred by deadline-constrained
batch jobs. By exploiting the slackness of these jobs, we
design a scheduling module to smooth the aggregated demand
curve, and design a reservation module to obtain the renting
strategy with the minimum cost. We test our brokerage service
with real traces from one of Google’s large-scale computing
cluster. Evaluation results show that our cloud brokerage can
significantly reduce the total cost for web service providers
running deadline-constrained batch jobs. The online reserva-
tion mechanism will be my future work.

ACKNOWLEDGMENT

The work described in the paper is supported by the Nation-
al Grand Fundamental Research 973 Program of China (No.
2010CB328105), the Tsinghua University Initiative Scientific
Research Program (No. 20121087999).

REFERENCES

[1] Cloud Services Brokerage Company List and FAQ,
http://www.cloudbroker.com.

[2] N. Jain, I. Menache, and O. Shamir, ”Learning-Based Resource Allocation
for Delay-Tolerant Batch Computing,” Microsoft technical report.

[3] A. Wieder, P. Bhatotia, A. Post and R. Rodrigues, ”Orchestrating the
Deployment of Computations in the Cloud with Conductor,” in NSDI,
2012.

[4] H. Zhao, M. Pan, X. Liu, X. Li and Y. Fang, ”Optimal Resource Rental
Planning for Elastic Applications in Cloud Market,” in IEEE IPDPS,
2012.

[5] M. Zafer, Y. Song, and K. W. Lee, ”Optimal Bids for Spot VMs in a
Cloud for Deadline Constrained Jobs,” in IEEE CLOUD, 2012.

[6] Y. Song, M. Zafer, and K. W. Lee, ”Optimal Bidding in Spot Instance
Market,” in IEEE INFOCOM, 2012.

1 2 3 4 5 6
0

0.4

0.8

1.2

1.6

2
x 10

6

Experiment ID

T
ot

al
 c

os
t o

f c
lo

ud
 r

es
ou

rc
e

($
)

Total cost

(a)

0 1 3 7 8
0

2

4

6

8

10
x 10

7

Instance option ID

T
he

 h
ou

rs
 o

f i
ns

ta
nc

e
us

ag
e

(h
)

Exp.1
Exp.2
Exp.3
Exp.4
Exp.5
Exp.6

(b)

1 2 3 4 5 6
0

1

2

3

4

5
x 10

4

Experiment ID

of

 r
es

er
ve

d
in

st
an

ce
 r

en
te

d

option−1
option−3
option−7
option−8

(c)

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
40%

45%

50%

55%

60%

65%

70%

75%

S
av

in
g

ra
tio

Different value of parameter slackness

Cost saving ratio of our brokerage
Upper bound on the cost saving ratio

(d)

Fig. 6. (a) the total cost of each experiment. (b) the number of different instances used in each experiment. (c) the number of different reserved instances
rented in each experiment. (d) the cost saving ratio of our brokerage service under different slackness parameter.

[7] W. Wang, D. Niu, B. Li, and B. Liang, ”Dynamic Cloud Resource
Reservation via Cloud Brokerage,” in IEEE ICDCS, 2013.

[8] http://www.aws.amazon.com/ec2/pricing/
[9] C. P. Low, ”An approximation algorithm for the load-balanced semi-

matching problem in weighted bipartite graphs,” in Information Process-
ing Letters, vol. 100, no. 4, pp. 154-161, 2006.

[10] Amazon Web Services, Inc. ”Amazon Elastic Compute Cloud User
Guide”, https://aws.amazon.com/documentation/ec2/

[11] J. Wilkes and C. Reiss, ”Google Cluster-Usage Traces”, http-
s://code.google.com/p/googleclusterdata/wiki/ClusterData2011 1.

[12] T. Hacker, K. Mahadik, ”Flexible Resource Allocation for Reliable
Virtual Cluster Computing Systems”, in SC, 2011.

[13] B. Palanisamy, A. Singh, L. Liu and B. Langston, ”Cura: A Cost-
Optimized Model for MapReduce in a Cloud”, in IPDPS, 2013.

[14] S. Alamdari, T. Biedl, T.M. Chan, E. Granty, K.R. Jampaniz, S. Keshav,
A. Lubiw, and V. Pathak, ”Strip Packing with Slicing”.

[15] C. Martel, ”Preemptive Scheduling with Release Times, Deadlines, and
Due Times”, Journal of the Association for Computing Machinery, vol.
29, no. 3, pp. 812-829, 1982.

APPENDIX A
PROOF OF THEOREM 1

Proof: We first introduce the following machine schedul-
ing problem [14].

Problem 1. (Load-balanced Semi-matching Problem (LBSM-
P)) Given a bipartite graph G = (U∪V,E) where E ⊆ U×V .
Every vertex u ∈ U is associated with a non-negative weight
w(u). A set of edges X ⊆ E is a semi-matching on the bipartite
graph G = (U ∪ V,E) if each vertex u ∈ U is incident
to exactly one edge in X . The sum of weights of vertices
u ∈ U which are assigned to some vertex v ∈ V under the
semi-matching X is referred as the load of of vertex v. The
Load-balanced Semi-matching Problem (LBSMP) is to find
a semi-matching that minimizes the maximum loads of the
vertex v ∈ V .

We next show that a special case of our optimization
problem is identical to LBSMP. In particular, consider a spe-
cial case of our optimization problem whereby the instances
required by each job should be satisfied in one hour, i.e.,
Di = ci, ∀i ∈ [1,M]. From the viewpoint of the special
case of our optimization problem, we may consider the vertex
set U as a set of job requests and the vertex set V as a set
of time slots t(∀t ∈ [1, T]) where jobs can be assigned. An
edge exists between vertice u ∈ U and vertice v ∈ V if the
job corresponding to vertice u can be assigned in the time
slot, which is between the start time and due date of the job,
corresponding to the vertice v. For each vertice u ∈ U , its

weight w(u) corresponds to the instances required by the job
u. It is easy to see that the special case of our optimization
problem is identical to the LBSMP . Since the LBSMP is
known to be NP-Complete [9], our optimization problem is
also NP-Complete.

APPENDIX B
COMPLEXITY ANALYSIS OF PROBLEM (2)

In the following, we use the case of single reservation option
to show that the direct dynamic programming method requires
an exponential complexity in both time and space. In the case
of single reservation option, we suppose the parameter relate
to the option is (γ, α, τ). The state at time t is represented as
st = (x0

t , x
1
t , . . . , x

τ−1
t , nt), where xi

t denotes the number of
reserved instances rented at time t−i for i ∈ [0, τ−1], and nt

denotes the number of reserved instances that are still effective
at time t. So the state at time t: st = (x0

t , x
1
t , . . . , x

τ−1
t , nt)

can be directly transformed from the state at time t−1: st−1 =
(x0

t−1, x
1
t−1, . . . , x

τ−1
t−1 , nt−1) by the following transformation

rules.

xi
t = xi−1

t−1, ∀i ∈ [1, τ − 1] (7)

nt = nt−1 − xτ−1
t−1 + x0

t (8)

Then we define C(st) to be the minimum cost of serving the
demands V0, V1, . . . , Vt up to time t. Since the state in current
time is only dependent on the state in the previous time, we
get the recursive Bellman equation.

C(st) = min
st−1

{C(st−1) + x0
tγ +min(Vt, nt)α+ (Vt − nt)

+β}

(9)

where Y + is used to denote max{0, Y } and the minimization
is over all states in time t−1 that can transmit to state st. The
minimum cost of reaching state st is given by the minimum
cost of reaching state st−1 plus the cost for serving the demand
Vt. To satisfy the demand Vt at time t, the brokerage needs
to rent x0

t new reserved instances, use min(Vt, nt) reserved
instances and launch (Vt − nt)

+ on-demand instances. The
calculation process is from time 0 to time T − 1. In every
stage, we enumerate the possible states and search for the
minimum cost for them based on the minimum cost of state in
the previous stage. As we can see, both of the time complexity
and space complexity are exponential. The simple case is so
difficult to work out, let along the multiple reservation options.

