
This paper was presented as part of the main technical program at IEEE INFOCOM 2011

Padding for Orthogonality: Efficient Subspace

Authentication for Network Coding

Peng Zhang*, Yixin Jiang*, Chuang Lin*, Hongyi Yaot, Albert Waser+ and Xuemin (Sherman) Shen+
*Tsinghua National Laboratory for Information Science and Technology,

Dept. of Computer Science and Technology, Tsinghua University, Beijing, China
tDept. of Electrical Engineering and Computer Science, California Institute of Technology, USA

+Dept. of Electrical and Computer Engineering, University of Waterloo, Ontario, Canada

Abstract-Network coding provides a promising alternative to
traditional store-and-forward transmission paradigm. However,
due to its information-mixing nature, network coding is notori­
ously susceptible to pollution attacks: a single polluted packet can
end up corrupting bunches of good ones. Existing authentication
mechanisms either incur high computation/bandwidth overheads,
or cannot resist the tag pollution proposed recently. This paper
presents a novel idea termed ''padding for orthogonality" for
network coding authentication. Inspired by it, we design a public­
key based signature scheme and a symmetric-key based MAC
scheme, which can both effectively contain pollution attacks
at forwarders. In particular, we combine them to propose a
unified scheme termed MacSig, the first hybrid-key cryptographic
approach to network coding authentication. It can thwart both
normal pollution and tag pollution attacks in an efficient way.
Simulative results show that our MacSig scheme has a low
bandwidth overhead, and a verification process 2-4 times faster
than typical signature-based solutions in some circumstances.

I. INTRODUCTION
Network coding provides a new data transmission paradigm,

in which intermediate nodes are allowed to code/mix pack­
ets rather than just forward them. This information-mixing
based technique is proven capable of achieving maximized
throughput [1], enhanced robustness [2], and lower energy
consumption [3] for communication networks. Specially, ran­
dom network coding [4] is verified to have all the above
features, and can be efficiently deployed in a distributed way.
Due to its nice features, random network coding has already
found applications in content distribution networks [5], P2P

streaming networks [6], wireless mesh networks [7], etc.
However, the information-mixing nature of network coding

also renders it more susceptible to pollution attacks than
traditional store-and-forward paradigm. Consider a scenario
in which a commercial data center is distributing a file to
a set of costumers via a network coded P2P network. An
adversary pretends as a normal customer, by downloading and
contributing packets of the file. In this process, it generates
corrupted packets and contributes them to its peers. After being
coded with other packets, a single corrupted packet can result
in tens or even hundreds of polluted ones. This may cause
legitimate users unable to download the file properly.

Existing schemes include information-theoretic schemes
[8], [9], and cryptography-based schemes [10]-[18]. For
information-theoretic schemes, they can only passively tolerate
pollution at sinks, but not actively prevent them. On the other

hand, cryptography-based schemes enable forwarders to verify
the integrity of their received packets, so that corrupted packets
can be discarded before polluting good ones. This paper only
considers the cryptography-based schemes, which can be fur­
ther grouped into two classes. The first class includes schemes
[10]-[14] that are built on public-key based techniques, such
as homomorphic hash, homomorphic signature, etc. These
schemes are provably secure under the hardness assumptions
of well-known cryptographic problems, but will incur high
computation overhead at forwarders. The second class are
schemes [15]-[18] which involve symmetric-key encryptions
that are computationally efficient. The main disadvantages of
schemes in this class include that they incur a larger bandwidth
overhead and must carefully manage the keys.

This paper approaches the problem of network coding
authentication using a novel idea called "padding for orthog­

onality": the source pads each packet with an extra symbol,
so that the subspace spanned by these padded packets is
orthogonal to a specific vector; forwarders check the integrity
of a received packet by verifying whether it maps this vector
to zero. Based on this idea, we propose a public-key based
scheme and prove its security under the hardness assumption
of discrete logarithm problem. In addition, we also propose a
symmetric-key based scheme that is secure against a coalition
of c adversaries. Most importantly, we carefully combine them
to propose MacSig - the first hybrid-key based approach to
network coding authentication.

Our MacSig scheme offers the following primary features:
(1) Security against Pollution. It can effectively not only
thwart normal pollution attacks, but also resist tag pollution

presented in [17]. (2) Bandwidth Efficiency. It requires a
smaller number of tags for each packet compared with [16]

(which uses the key distribution scheme given in [19]). (3)

Computation Efficiency. It needs a moderate/small number
of symmetric-key/public-key cryptographic operations. Simu­
lations show that its verification process is 2-4 times faster
than typical signature-based schemes [12]-[14] in some cir­
cumstances.

The rest of this paper is organized as follows. Section II
gives a formal statement of the problem to be studied. Section
III presents our basic idea, and introduces two authentication
schemes based on it. Section IV proposes a hybrid-key authen­
tication scheme, whose performance is evaluated in Section

978-1-4244-9921-2/11/$26.00 ©2011 IEEE 1026

V. Section VI discusses how our schemes can be adapted to
function in a more general case. Section VII surveys some
related work, and Section VIII concludes.

II. PROBLEM STATEMENT

A. Network Model

We consider a typical multicast scenario, in which a source
S needs to deliver a series of packets �l' �2 ' ... '�m to
multiple receivers {Ri}. Each packet �i is represented as a
vector (;fi,1 ,;fi,2 ' ... ,;fi,n) of finite field IF�, where p is a
prime.

For each �i' the source S generates an augmented packet
Xi by prefixing �i with the ith unit vector of dimension m:

m

Xi = (0, ... , 0, 1, 0, ... , 6, ;fi,l ' ;fi,2 ' ... ,;fi,n) (l)
�

i-I

Let V denote the subspace spanned by Xl , X2 , ... , Xm, and
term Xi as the ith basis vector of V. Then S sends vectors in
V and the network is responsible for replicating of V at each
receiver Ri, who can derive �l' ... '�m by computing the m

basis vectors of V via Guassian eliminations.
Specifically, for random network coding the source sends

linear combinations of packets using randomly selected coeffi­
cients. For example, linearly combining packets Xl , X2 , ... , Xl
using coefficients (}:l , (}:2 , ... ,(}:l results in

I I I
Y = L (}:iXi = (L (}:iXi,l ,···, L (}:iXi,m+n) (2)

The first m symbols of yare termed as its coding coefficients.

Intermediate nodes linearly combines their received packets
for output in a similar way. Then a receiver Ri can recover
V exactly after receiving m linearly independent packets. In
fact, any m received packets are linearly independent with a
high probability given the filed size p is sufficiently large [4].

In this paper, we consider a more realistic setting, in which
the data D to be sent consists of more than m packets. Using
the technique introduced in [20], S should first break D into
multiple generations:

D = [�l '··· '�h'··· '�(n-l)h+l '··· ,�nh,···J (3)
""-v---" ' "

G1 On
Then S sends D as a stream of generations, with network
coding only performed among packets belonging to the same
generation.

B. Adversary Model

The adversary is aimed at injecting a small number of
corrupted packets into the network to cause a large scale
of pollution. To achieve this goal, he strives to collect legal
packets and forge corrupted ones that can pass the verification
of other innocent nodes. Without loss of generality, we assume
the source is always trusted, but the relay nodes can be
compromised. By compromise, we mean that the adversary
can read the memory, monitor the input, and control the output

of a compromised node. In this paper, we allow the adversary
to compromise a coalition of nodes to launch more effective
attacks. Finally, we assume that the adversaries are aware of
our authentication scheme, but are bounded in computation
power, and can only perform polynomial-time algorithms.

III. HOMOMORP HIC SUBSPACE AUTHENTICATION

In this section, we first introduce the basic idea of "padding

for orthogonality", and then propose two different schemes
for network coding authentication: the Homomorphic Sub­

space Signature (HSS), and the Homomorphic Subspace MAC

(HSM).

A. Basic Idea Overview

Noted from our network model, although packets undergo
rounds of coding processes at forwarders, the linear subspace
V spanned by them stays constant. We can check the integrity
of a packet w by verifying whether w E V. Based on this
observation, we can characterize V using a vector v randomly
chosen from its orthogonal subspace, and let forwarders check
whether w . vT = O. This approach catches an essential
property of network coding - the invariance of linear sub­
space, and inspires some appealing schemes [13], [14], [18].

However, it still has two practical problems unsolved: (1) For
different generations, the source should calculate different v's,
and distribute them prior to transmission, which can cause a
high startup latency. (2) These v's should also be authenti­
cated, meaning that an extra secure channel is required.

m

m+n

m+n+)

1 ... 1
Source packets

L-L-'--L-LI _ .. ·--,--1 ...L--"ma""" V

x

Fig. 1: The idea of "padding for orthogonality"

m+n+\

Now, we present a novel approach called "padding for

orthogonality" to overcome these two problems. By this
approach, the source randomly samples a vector v of length
m + n + 1 at the bootstrap stage, and for every generation, the
source pads each packet with an extra symbol/tag, so that its

1027

inner product with v equals zero, as shown in Fig. 1. Then the
subspace V spanned by these augmented packets is orthogonal
to v. To verify a packet w, a relay node just checks whether
W . vT = 0. Clearly, using this approach, we don't have to
pre-distribute v's per generation using a secure channel; we
just need m tags which cause no startup latency.

To make this approach function in presence of Byzantine
adversaries, who attempt to forge tags for illegal packets, we
consider the following two techniques. First, we can let the
source keep v as a secret key, and based on it generate a
public key which can be used by relay nodes to verify the
integrity of packets. If it is sufficiently hard to derive v based
on the public key, then relay nodes cannot successfully forge
tags for any illegal packets. For the second solution, we let
the source keep a pool P of v's, and pad each packet with
multiple tags generated according to these v's; each relay
node is assigned with a subset of P, and can only verify a
packet against part of its tags. If these v's are distributed
properly, a corrupted packet generated by a malicious node
will fail the verifications of other nodes with high probability.
The following Homomorphic Subspace Signature (HSS) and
Homomorphic Subspace MAC (HSM) scheme are designed
using these two techniques, respectively. For simplicity of
introduction, we assume that the transmission consists of only
one generation. We will discuss the multiple-generation cases
later in Section VI.

B. The Homomorphic Subspace Signature

The Model. A Homomorphic Subspace Signature (HSS) is
defined as a tuple of four probabilistic polynomial-time (PPT)
algorithms (Setup,Sign,Combine, Verify):

• Setup. Input: 1 k, the security parameter, and N, the
length of vectors to be signed. Output: a prime number
q, a secret key Ks, and a public key Kp.

• Sign. Input: a vector x E IF;:, and the secret key Ks.
Output: a vector x = (x,O"), where 0" E lFq is termed as
the signature of x.

• Combine. Input: l vectors xl, ... , Xl, where Xi = (Xi E
IF;: , 0" i E IF q), and l coefficients al, ... , ai, where ai E
IF q. Output: a vector X = (2:�=l aiXi , 0" E IF q).

• Verify. Input: a vector X = (x ElF;:, 0" E IF q), and the
public key Kp- Output: either 1 (accept), or 0 (reject).

An HSS is said to be correct if the following two conditions
are satisfied:

(1) Verify(Sign(x, Ks), Kp) = 1 and

(2) Verify(xi' Kp) = 1 for i = 1, ... ,l =}
Verify(Combine(Xl, ... , Xl; al , ... , al) , Kp) = 1

An HSS is said to be secure if for any PPT adversary A,
the probability that A wins the security game HSS-GAME
defined below is negligible in the security parameter k:

• Setup. The adversary A specifies parameters 1 k and N.
The challenger C runs Setup(l k, N) to generate q, Ks
and Kp, of which it sends q and Kp to A.

• Query. A adaptively submits vectors Xl, ... ,Xm to C,
who runs Sign for these vectors and sends the correspond­
ing Xl, ... , Xm to A.

• Forge. A generates a vector y = (y E IF;:, 0" E IF q) with
y rt- span(xl, ... ,Xm) . IfVerify(y , Kp) = 1, then A
wins; otherwise A loses.

Remarks. When applying the above HSS scheme to the
network coding model given in Section II-A, we can just let
N = m + n and q = p.
The Construction. Based on the above model, we give our
construction of HSS.

• Setup. Given 1 k and N, perform the following steps: (1)

choose a prime number q > 2k; (2) find a multiplicative
cyclic group G of order q, and select a generator g for G;

(3) set {3 !!.- IF;:lF�, and calculate h = (gf31, ... ,gf3N+l).
Output q, Ks = {3, and Kp = h.

• Sign. Given x E IF;: and {3, calculate the signature 0" =

-(2:!l (3iXi)/(3N+l. Output X = (X, 0") .

• Combine. Given Xl, ... , Xl, where Xi E IF;:+l, and
al ,··. , ai, where ai E lFq. Output X = 2: �=l aixi·

• Verify. Given X E IF;:+l and h, calculate 6 = hre �
f1!�l

hi'. Output 1 if 6 = 1, or 0 otherwise.

Theorem 1. Our construction of HSS is correct.

Proof" Let X = Sign(x, (3), then it is easy to verify
that X . {3T = 2:!�l

xi(3i = 0, and then 6 = hre =
gre.f3T = 1. Thus Verify(x, h) = 1, and Condition (1) holds.
Similarly, it is easy to verify that any vector X which passes
the verification must satisfy X . {3T = o. Therefore, if we
assume Xl, ... , Xl pass the verification, then {3 is orthogo­
nal to the subspace V = span (Xl, ... , Xl). By definition,
y = Combine(xl, ... , Xl; al ,··· , al) E V, then y . {3 = 0,
and Verify(y, h) = 1. Thus Condition (2) also holds. •

Theorem 2. Our construction of HSS is secure.

Proof" Suppose A wins the security game with some y =
(y,O"). Since y rt- span(xl, ... , xm), it immediately follows
that y rt- span(xl, ... , Xm). In addition, we have hii = 1
and hrei = 1, i = 1, ... , m. By employing the techniques
given in Section 3.2 of [21], A can also solve the discrete
logarithm problem over G with a probability at least 1 -l/q.
Note that for any PPT algorithm, the probability that it solves
the discrete logarithm problem over a cyclic group of order
q = 2k is negligible in k [22]. Thus, for any PPT adversary
A, the probability that it wins HSS-GAME is also negligible
in k. •

C. The Homomorphic Subspace MAC

The Model. Similar to HSS, a Homomorphic Subspace MAC

(HSM) is defined as a tuple of four probabilistic polynomial­
time (PPT) algorithms (Setup,MAC,Combine,Verify):

• Setup. Input: 1 k, the security parameter, and N, the
length of vectors to be authenticated. Output: a prime
number q, a set K consisting of r MAC keys.

1028

• MAC. Input: a vector x E IF;:, and the key set K. Output:
a vector x = (x, t1, ... , tr), where ti E lFq is a MAC of
x calculated using the ith MAC key.

• Combine. Input: l vectors Xl, ... , Xl, where Xi = (Xi E
IF;:, Ti E lF�), and l coefficients a1, ... , ai, where ai E
IF q. Output: a vector X = (2:�=1 aiXi , T E lF�).

• Verify. Input: a vector X = (Xi E IF;:,T E lF�), and a
key set K' C K. Output: either 1 (accept), or 0 (reject).

An HSM is said to be correct if the following two conditions
are satisfied:

(1) Verify(MAC(x, K), K) = 1 and

(2) Verify(xi, K) = 1 for i = 1, ... , l =>
Verify(Combine(x1' ... ' Xl; a1 , ... , al) , K) = 1

An HSM is said to be secure if for any PPT adversary A,
the probability that A wins the security game HSM·GAME
defined below is no greater than l/qd:

• Setup. The adversary A specifies parameters 1 k and N.
The challenger C runs Setup(1 k , N) to generates q and
K. Then it randomly selects two key sets K' C K and
K" C K, with IK"\K'I = d, and sends K' to A.

• Query. A adaptively submits vectors Xl , Xm to C,
who runs MAC for these vectors, and sends to A the
MACs T1, T2, ... , Tm, where Ti = {ti,l, ... , ti,r}.

• Forge. A chooses a vector y tf. span(x1, ... , xm).
Then for each i = 1, ... , r, it calculates the MAC ti
if ki E K', or randomly forges the MAC ti if ki tf. K'. If
VerifY((Y,h, ... ,tr) , K") = 1, then A wins; otherwise
A loses.

Remarks. Different from homomorphic subspace signatures,
an HSM uses symmetric keys, i.e., MAC keys, for authentica­
tion. The advantage is that forwarders can perform the Verify
procedure much more efficiently. However, an adversary can
also easily forge MACs for illegal packets if all MAC keys
are publicized. Thus, we require that the source hold a set K
of MAC keys, and each relay node be assigned with a random
subset of the K. In this way, each forwarder can only forge
some MACs correctly for an illegal packet. If the receiver of
this illegal packet has some MAC keys that the adversary does
not have, then it can successfully detect the forgery. HSM·
GAME characterizes this security requirement, by simulating
a scenario in which a malicious node with key set K' attempts
to forge MACs that pass the verification of another node with
key set K".
The Construction. Based on the above model, we give our
construction of HSM.

• Setup. Given 1 k and N, choose a prime number q > 2k,
and set 'Yi = h'i,l, ... , 'Yi,N+1) !!:- IF;:lF� for each i =
1, ... , r. Output K = ('"'f1, ... , 'Yr) .

• MAC. Given x E IF;: and K, calculate a tag ti =

��;=1 'Yi,jXj)/'Yi,N+1 for each i = 1, ... , r. Output
x - � x, h, ... , tr).

• Combine. Given x!, ... , Xl, where Xi E IF;: +r, and

a!, ... , ai, where ai E lFq, output X = 2: �=1 aixi·

• Verify. Given X E IF;:+r and K' C K, calculate �i =
2:f=l 'Yi,jXj + 'Yi,N+1XN+i, for each 'Yi E K'. Output 1
if all �i = 0, or 0 otherwise.

Theorem 3. Our construction of HSM is correct.

Proof" For r = 1, the proof is much similar to that of
Theorem 1, and it is easy to extend the proof to cases of
r > 1. We omit the details here due to the limit of space. •
Theorem 4. Our construction of HSM is secure.

Proof" For each i = 1, ... , r, we consider the following
three cases: (1) 'Yi E K'. A can accurately calculate the MAC
ti which evaluates �i to zero. (2) 'Yi tf. K' and 'Yi tf. K". Any
ti E IF q is valid since it will not be checked. (3) 'Yi tf. K'
but 'Yi E K". After the Query step, A can get the following
group of equations regarding 'Yi:

T . 'Yi = 0 (4)

which has pN+1-R solutions for 'Yi, where R is row rank of
the coefficient matrix. Suppose we insert into this group of
equations with:

(y,t) ·'YT = 0 (5)

where y tf. span(x1, ... ,xm), t E lFq. Then the row rank of
the coefficient matrix will be R+ 1, the solution set for 'Yi will
have cardinality qN-R. This means that qN-R/qN+1-R =
l/q of solutions to Eq. (4) can solve Eq. (5). As we assume
that the MAC key 'Yi is sampled randomly from IF;: +1, the
probability any t is a valid MAC that evaluates �i to zero is
exactly 1/ q. Since there are totally d such i satisfying that
'Yi tf. K' and 'Yi E K", the probability of �i = 0 for all these
i is then l/qd. •

D. MAC Key Distribution for HSM

Recall in our construction of HSM, the probability that
any packet polluted by a node A can pass the verification of
another node B is bounded by 1/ qd, where d is the number
of MAC keys held by B but not by A. This implies that
the security level of HSM depends on how MAC keys are
distributed among nodes in the network. In this subsection, we
first formalize this problem of MAC key distribution, and then
introduce our proposed scheme. We assume a strong adversary
model, in which a set of compromised nodes can collude to
launch pollution attacks.
The Problem. Let n denote the set of all nodes except the
source S, with I n I = N. Let K be the set of all MAC keys
held by S. To each node Wi E n, S assigns a subset K(Wi) C
K of MAC keys. For a set A c n, define its keys as K(A) �
UwiEA K(Wi) . We say a key k E K is safe with respect to a
node Wi and a set A, if k E K(Wi)\K(A). We say the key
distribution scheme is c-secure if for any Wi E n and A c n
with IAI :::; c, there is at least one safe key.

Canetti et al. [19] introduce a probabilistic key distribution
mechanism, in which every node Wi E n is assigned with any

1029

key k E K with an equal probability Pa. They show that by
letting IKI = e(c + 1) In � and Pa = C!l' the probability that
there is at least one safe key for a randomly chosen Wi and
A with IAI = c can be made higher than 1 - E. However, to
achieve this for any Wi and A with IAI = c, i.e., to make the
distribution mechanism c-secure with probability at least 1- E,
IKI should be made no less than e(c + 1)21n N. This means
that each packet should carry e(c + 1)21n N MACs, which
clearly does not scale when the network size N is large. To
overcome this limitation, we propose a new approach using
which the number of MACs per packet has no relation with
N.
Double-Random Key Distribution. Our proposed scheme,
termed as Double-Random Key Distribution, gets its name
because MAC keys are distributed via two random procedures:
the first procedure assigns each node with a random set of
keys, just like in [19]; the second one randomly selects keys to
be used for MAC calculations. More specifically, in the second
procedure, the source randomly selects a subset of l MAC
keys from K for each generation. Then the source calculates l
MACs using these keys for each packet. In addition, to inform
forwarders of the selected keys, the source attaches the indexes
of these l keys to each packet.

The rationale of our proposed scheme is to introduce
randomness when generating MACs at the source. This ran­
domness can prevent the adversary from knowing the keys
used for MAC calculation before hand, and hence prevent
the adversary from electively compromising nodes. Theorem
5 shows that the number of MACs per packet has no relation
with the N, meaning that the bandwidth overhead is scalable
with the network size.

Theorem 5. Let the number of secret keys be IKI = e(c +
l)m, with m = -bh + l)(c + 1) InN, 1 > 0 and 0 < 6 < 1.
Let the number of MACs per packet be l = 1�8e(c + 1) In � ,
and the key assigning probability be Pa = c!l. Then the
probability that the double-random key distribution is c-secure
is no smaller than 1 - E, when 1 -+ 00.

Proof· See the Appendix. •

IV. THE MAC SIG AUTHENTICATION SCHEME

As shown in the previous section, the HSS scheme is proven
secure under the hardness assumption of discrete logarithm
problem, and it incurs a lower bandwidth overhead than HSM.
However, in most cases, especially when computation power
is constrained (e.g., WSN), we prefer the HSM scheme, since
it puts less burden on forwarders. However, the recent work
[17] reports that such homomorphic MAC based schemes (in­
cluding our HSM) may suffer from tag pollution. Fortunately,
we observe that our HSS scheme can be utilized to help HSM
thwart this attack. In this section, we first give preliminary to
the problem of tag pollution, and then propose a novel scheme
termed MacSig to solve it.

A. Preliminary to Tag Pollution

By tag pollution, an adversary aims to modify the tags
(MACs for HSM) carried by packets rather than the contents

of them. If a receiver of a packet with polluted tags does not
have necessary keys to check at least one of them, it cannot
detect and filter out this tag-polluted packet. It is possible that
a packet with polluted tags travels multiple hops until it is
finally detected and discarded, which can result in a waste of
network bandwidth.

Fig. 2: An example of tag pollution in HSM

For a concrete understanding, consider the example given
by Fig. 2, in which there are one adversary A, one receiver
D, and some relay routers. Each packet is attached with four
MACs. A pollutes two MACs tl and t3 in both its output
packets Xl and X2. As Rl can verify the packet Xl against its
MAC t3 using k3, it can detect the tag pollution and discard
Xl. However, since R2 has neither kl nor k3, X2 will pass
the verification of R2 and encode into another two packets X3
and X4. As D just extracts the content of X3, it is not affected
by the polluted MACs. On the other hand, packet X4 will
be discarded at node R3. As a result, the bandwidth of link
R2 -+ R3 is wasted. For a worse case in which a tag-polluted
packet can travel more hops and infect more packets before
being detected, the bandwidth waste will be considerable.

B. MacSig: The Proposed Scheme

We propose a novel scheme termed MacSig, which uses
both homomorphic MACs and signatures for packet authenti­
cation. The basic idea is shown in Fig. 3(a), where the packet
content is authenticated by homomorphic MACs, and these
MACs are further authenticated by a homomorphic signature.
In real implementation of SigMac, we also let the signature
authenticate part of the packet content (reasons to be given in
Section IV-C). Specifically, we let the signature authenticate
both the MACs and coding coefficients of the packet, as shown
in Fig. 3(b).

In the following, we give the details of our MacSig scheme.
For convenience of demonstration, we first assume the key
distribution scheme in [19], and then show how our double­
random approach can be used in MacSig. Similar to the
construction of HSS and HSM introduced in Section III, our
MacSig consists of four probabilistic polynomial-time (PPT)
algorithms.
Setup: The source performs the following five steps: (1)

find a multiplicative cyclic group G of order p, and se­
lect a generator 9 for G. (2) sample the secret key {3 =
((31, . . . ,(3m+l+d .!!:- l8'�+Il8';. (3) compute the public key
h = gf3 £. (gfh, . . . ,gf3=+I+!). (4) sample a pool of MAC keys

K = biH=l' where Ii = hi,l, . · · '1i,m+n+l) .!!:-l8'�+nl8';.

1030

(a)

(b)

coefficients JIt
.... --

.... , packet symbols � \

1 1 1 ... 1 1 1 1 I··· 1 HI<I ... I>� , I

--- ---
� packet symbols

I /t-<.::::.�'.....
1 1 I··· 1 1 1 1 1 I· .. [11>1 ... IH§8§
\)

coefficients

Fig. 3: Basic idea of the MacSig authentication scheme.

(5) for each MAC key, assign it to each node with an equal
probability Pa.
MAC+Sign: The source performs the following three steps:
(1) for the ith source packet Xi, attach l MACs {ti,l , ... , ti,d,
where ti,j is calculated as:

",m+n
t .. -

- L-r=l 'Yj,rXi,r
't,J -

'Yj,m+n+1
(6)

(2) attach the signature (Ji to Xi, where (Ji is calculated as:

(Ji =
- 2:7=1 (3jXi,j + 2:�=1 (3j+mti,j

(7)

(3) output the resultant packet Xi = (Xi , ti,l ,.··, ti,l , (Ji),
which has length m + n + l + 1.
Combine: Relay nodes performs standard random network
coding over incoming packets to generate output ones.
Verify: For each incoming packet y, the relay node calculates
the value of (j using

m 1+1
(j = II hfi II h;,=�n+i

i=l i=l
(8)

Y is rejected if (j -I- 1; otherwise the verification process
continues. Using each of its MAC keys "ti, the relay node
calculates the value of �i using:

m+n
�i = L 'Yi,rYr + 'Yi,m+n+1Ym+n+j (9)

r=l

Y is rejected if these exists a �i -I- 0; otherwise it is accepted.
To employ the double-random key distribution in MacSig,

we alternatively let the source sample IKI > l MAC keys,
and randomly select l from them to calculate MACs in each
generation. Also, the source should attach the indexes of the
l selected keys to each packet Xi. The value of IKI and l can
be determined according to Theorem 5.

C. Security Analysis

Theorem 6. The MacSig authentication scheme is secure
against tag pollution.

Proof First, we give some notations in this proof. Let
X = (x, t) denote a packet, where X = (Xl , X2 ,·· ., xm)

are messages symbols, and t = (it, t2 , ... , tl , (J) are tags.
Let V be the subspace spanned by the m source packets
Xl , X2 , ... , Xm, and T be the subspace spanned by their
respective tags t1 , t2 , ... , tm .

We consider an attack scenario comprised of an adversary
node A, and an innocent node I. Let KI be the set of
MAC keys assigned to I, with b = IKII > O. Without
loss of generality, we assume KJ = b1, "12 , ... , 'Yb}, with
"Ii corresponding to the ith MAC of a packet. The goal of A
is defined as: given a packet y = (y, t) E V, construct tags
t' -I- t so that the packet y' = (y, t') passes I's verification.

Suppose that the authentication approach given in Fig.
3(a) is employed. Then t' should satisfy the following two
conditions: (I) t' E T (by Theorem 2); (2) t� = ti for each
i = 1,2, ... , b (since message symbols are not modified).
Let Y1 , Y2 , ... , Ym be any m linearly independent packets
belonging to V, with Yi = (Yi , ti). Then any t' that satisfy
the above two conditions can be represented as:

t' = Q(tf , tI ,··· , t;'f (10)

with Q subjected to: (t1,1 , t1,2 ,
t2,1 , t2,2 ,

Q .

t�,l ' t�,2 '

(11)

it,b)
t2 b

:
' =(it ,t2 , ... ,tb)

tm,b

Let A be the column rank of the coefficient matrix. Assume
that b < m, then we can obtain pm->. solutions for Q, meaning
that there will be pm->. possible t'. As only one of these t'
is equal to t, the tag pollution will succeed with a probability
of 1 - l/pm->.. Thus, the verification approach given by Fig.
3(a) is not secure.

Now suppose the MacSig scheme is employed instead. In
this case, Condition (2) remains the same, while Condition (1)

should be changed to: (Y1 , Y2 , ... , Ym, t') E T', where T' is
the subspace spanned by the first m and the last l + 1 symbols
of source packets Xl , X2 , ... , xm. As a result, the equations
that Q is subjected to becomes: (Y1,1 ,

Y2,1 ,
Q. .

Ym,l ,

... , Y1,m , t1,1 ,

... , Y2,m , t2,1 ,

. .. , Ym,m, tm,l ,

(12)

where the first m columns are introduced by the new Condition
(1). As these m columns are linearly independent, the column
rank of the coefficient matrix will be m. Then there is only
one solution for Q, using which A can only construct a t' = t.
Thus tag pollution is not possible. •

V. PERFORMANCE EVALUATION

This section studies the performance of our MacSig au­
thentication scheme in terms of bandwidth and computation
overhead.

1031

A. Bandwidth Overhead

We neglect the bandwidth consumed by the key distribution
in the Setup stage, since it can be done offline. The online
bandwidth overhead per packet includes l MACs, l MAC
key indexes, and a signature. Since MACs and signatures are
defined over IF p, just as message symbols, they both have size
of Ipi = IIOg2 P 1 bits. Next, we determine the size of a MAC
key index. As there are IKI = j,e(c + 1)2(-y + 1) InN MAC
keys in total, a key index can be represented by A = lIog21K11
bits. To get a sufficiently large A, we assume an extreme case
where c = 10, 'Y = 1000 and N = 1000 (then the probability
h in the proof of Theorem 5 will be less than 10-12). For this
case, A equals 29, but we choose A = 32 instead for sake of
byte alignment.

From the above analysis, the bandwidth overhead of the
M S' h . 0 1+1 321 h l ac Ig sc eme IS b = m+n + Ipl(m+n)' w ere =

1�8e(c+1) In �. We calculate Ob by fixing 6 = 0.1, n = 20m,
Ipi = 128, and varying the values of n, c, E. Fig. 4 shows
the relationship between bandwidth overhead per packet and
packet size n (the number of symbols in each packet) for
different c and E. We observe that the bandwidth overhead
decreases with the packet size. Especially, when the packet
size is larger than 700 symbols and the number of colluding
adversaries is less than 3, the per-packet bandwidth overhead
sits between 5% and 10%.

Q)
�
o � 0.15
Q;
a.
"0
� 0.1

.<:::

�
o
.<::: " 0.05
§
"0
C
tV
.0

500

--e-c=1,Pr=99%
-+-c;1,Pr-99.5%
-+-c;1,Pr-99.9%
-v-c;2,Pr-99%

600 700 800 900
packet length (symbols)

1000

Fig. 4: The per-packet bandwidth overhead of our MacSig
scheme (c is the number of coalition, and Pr = 1 - E is the
security probability).

B. Computation Overhead

For a similar reason with the last subsection, we will only
consider the online computation overhead incurred by the last
three stages.

MAC+Sign. For each packet, the source needs (m + n + 1) l
multiplications to calculate l MACs, and m + l + 1 multipli­
cations to generate the signature for these MACs. Thus the
computation overhead in this stage is (m+n+1)l+(m+l+1)
multiplications per packet.

Combine. Let w be the average number of packets com­
bined in each network coding round, then an average of
w(l + 1) multiplications are needed to combine the MACs
and signatures of the corresponding packets. The computation
overhead in this stage will not burden the relay nodes much
more, considering the standard network coding still requires

w(m + n) multiplications, with the packet size m + n much
larger than the number of MACs l.

Verify. First of all, we need to determine the compu­
tation complexity of exponentiation over IF p, since it is a
key operation required by MacSig verification. We utilize
the typical "square and multiple" method to calculate yX
over lFp as follows. First we compute the value of y2Z

for
1 :::; z < lxi, where Ixl is the size of x in bits. Since half of
the bits of x are zero on average, we need another � log21xl
multiplications to obtain yX. Thus an exponentiation over IF p
takes � Ipi multiplications. Secondly, to obtain a benchmark
for the running time of multiplications over IF p, we implement
the Montgomery multiplication algorithm [23] on a 2.0OGHz
Intel Core 2 CPU. For the case of Ipi = 128, we observe that
roughly 2.5 x 105 multiplications over lFp can be performed
per second.

Recall that to verify a packet in MacSig, m + l + 1 expo­
nentiations and (m+n+1)l multiplications are needed. Using
the fact that an exponentiation is equivalent to � Ipl multiplica­
tions, the overhead of this stage is �lpl(m+l+1)+(m+n+1)l
multiplications. Then we use the benchmark developed above
to evaluate the verification time of our MacSig scheme. By
fixing 6 = 0.1, n = 20m, Ipl = 128, E = 1/100, and varying
n, c, we obtain the results as shown in Fig. 5. For comparison,
we also include the other three signature-based schemes [12]­

[14], all of which require no less than m + n exponentiations
to verify a packet. From Fig. 5, we observe that verification
process in our MacSig scheme is 2 to 4 times faster than those
of the other three.

w
.s 800

�
� 600

Q;
a.

� 40
. ..,

500

-e- MacSig, c;1

-&- MacSig, c;2

--- MacSig, c;3

-v- Other schemes

600 700 800 900

packet length (symbols)
1000

Fig. 5: The per-packet verification time of our MacSig scheme
and those of the other three schemes [12]-[14] (represented
as a single curve)

VI. DISCUSSION

In the above of this paper, we have introduced three au­
thentication schemes (HSS, HSM, and MacSig) by assuming
single generation. If the transmission consists of multiple
generations, the adversary can launch repetitive attack: collect
legitimate packets of previous generations and use them to fake
packets for subsequent ones. In the following, we discuss how
to improve HSM and HSS so that they can resist this attack.

For the HSM scheme, we assume that the source and
other nodes share a common pseudorandom number generator
(PRNG). At the Setup stage, the source samples a pool of

1032

random seeds, and assigns these seeds to other nodes the same
way as distributing MAC keys. Before each generation, all
nodes run PRGN using their seeds to generating new MAC
keys. In this way, different generation will use different MAC
keys, and thus repetitive attack is not possible.

For the HSS scheme, we consider the following two ap­
proaches. In the first approach, prior to each generation,
the source randomly alters one element in the secret key,
and informs other nodes of the changed element in the
public key, just like the scheme in [13]. This approach can
be effective when the adversary is unable collect legitimate
packets with many zeros. In the second approach, we let the

,, =+n to
signature of a source packet Xi be (fi = g- 6j= =+1 PjX;,j.
For each generation, the source signs and sends the m sig­
natures {(fi}�l of its packets, and forwarders check whether
TIm+n hYi TIm Yi 1 Al . I . h" i=m+1 i i=l (fi = . ternatlve y, smce t 1S slgnature
scheme is homomorphic, we can have each signature travel
with the packet it signs. In this way, we don't need an
extra channel to transmit signatures in advance. Details of the
implementation would be left for our future work.

VII. RELATED WORK

In the context of network coding, security threats such as
traffic analysis, eavesdropping attacks, and entropy attacks
have been studied in [24], [25], and [26], respectively. Among
all the threats considered so far, pollution attacks are perhaps
the most concerned ones. To thwart this kind of attacks,
many schemes have been proposed. We classify them into two
categories: Information-theoretic schemes and cryptography­
based schemes.

Information-theoretic schemes aim to detect or correct
polluted packets at sink nodes using information-theoretic
approaches. For example, Ho et al. [8] present a scheme
which extends the standard random network coding to support
Byzantine modification detection, and Jaggi et al. [9] study the
designing issue of error-correction codes which can help sink
nodes recover corrupted packets. Although these information­
theoretic schemes are effective, they can only passively tolerate
pollution at sinks.

To actively prevent pollution from propagating among
intermediate nodes, several cryptography-based schemes
have been proposed. Some of these schemes use public-key
cryptographic approaches. For example, in the innovative
work of Krohn et al. [10], homomorphic hash function is
proposed to enable on-the-fly verification for erasure codes.
As the verification process requires nodes to compute expen­
sive homomorphic hash functions, the technique of hatched

verification is employed. Gkantsidis et al. [11] extend this
scheme to network-coding-based P2P networks, and further
reduce the computation overhead by enabling cooperative
verification among peers. One common limitation of these two
schemes is that the hash values of the whole file should be
computed at the source and delivered to downstream nodes
in advance. To address this problem, Yu et al. [12] propose a
homomorphic signature scheme on basis of homomorphic hash
function and RSA cryptosystem. In their scheme, each packet

carries a RSA-encrypted homomorphic hash, which functions
as its homomorphic signature. A recent work [27], however,
shows that this signature scheme is only conditionally valid,
and may be vulnerable to trivial no-message attacks. From
quite a different perspective, Zhao et al. [13] propose a
signature scheme in which relay nodes check the integrity of
packets by verifying whether they belong to the subspace of
source packets. Boneh et al. [14] introduces another signature
scheme similar to [13], but use signatures of a smaller size.
However, both [13] and [14] still require extra secure channels
to pre-distribute signatures, just like [10], [11]. To sum up
the above public-key cryptographic approaches, they are not
computationally efficient due to the expensive operations of
homomorphic hashing or signatures.

The inefficiency of public-key cryptographic approaches
motives the use of symmetric-key cryptographic ap­
proaches, which involve very simple and efficient operations.
In the scheme proposed by Yu et al. [15], the source attaches
to each packet multiple MACs, each of which authenticates
part of the packet. These MACs are encrypted using different
keys at the source, and relay nodes can cooperatively check
different MACs using their respectively shared keys. Agrawal
et al. [16] propose a similar MAC-based scheme, which
differs from [15] in that each MAC authenticates the whole
packet. However, this scheme is unfortunately vulnerable to
tag pollution, which can also degrade the system performance.
Towards this problem, Li et al. [17] propose RIPPLE, a time­
based authentication protocol which utilizes delayed release
of secret keys. One problem with RIPPLE is that it requires
global synchronization among all nodes, which is not easy to
be realized in distributed settings. Kehdi et al. [18] propose
another symmetric-key based scheme, which utilizes null keys

for verification. A null key is just a vector from the null space
of the matrix formed by the source packets; legitimate packets
are supposed to map null keys to zero. This scheme may incur
a high bandwidth overhead since it injects into the network
with multiple null keys for each generation. In sum, these
symmetric-key cryptographic approaches are quite efficient in
computation, but they have must carefully manage the keys,
and can incur a relatively large bandwidth overhead.

VIII. CONCLUSION

In this paper, we study how to achieve network coding
authentication in the presence of normal pollution and tag
pollution attacks. The basic idea is to pad each source packet
with an extra symbol to make it orthogonal to a given vector.
Under this idea, we propose a signature-based scheme HSS.
HSS doesn't need to pre-distribute signatures for each gener­
ation, and hence incurs no start-up latency. We also propose
a MAC-based scheme HSM, which employs a double-random
key distribution approach. The main advantages of HSM is
that the number of MACs attached to each packet scales with
the network size. By utilizing the techniques of both HSS and
HSM, we finally propose a hybrid-key based authentication
scheme MacSig. We demonstrate that the MacSig scheme
can effectively resist both normal pollution and tag pollution

1033

attacks, while incurring a relatively low overhead in bandwidth
and computation.

ACKNOWLEDGMENT

This work is supported by the National Basic Research
Program of China (No. 201OCB328105, 2011CB302703,
2007CB807900, and 2007CB807901), the National Natural
Science Foundation of China (No. 60970101, 60932003,
61033001,61073174, and 61061130540), Hi-Tech Research &
Development Program of China Grant 2006AA1OZ216, and
NSF grant CNS-0905615. Part of Hongyi Yao's work was done
when he was in Tsinghua University.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network infor­
mation flow," IEEE Trans. on Iriformation Theory, vol. 46, no. 4, pp.
1204--1216, Jul. 2000.

[2] D. Lun, M. Medard, R. Koetter, and M. Effros, "Further results on
coding for reliable communication over packet networks;' in Proc. of
IEEE International Symposium on Information Theory, Sept. 2005.

[3] Y. Wu, P. A. Chou, and S.-Y. Kung, "Minimum-energy multicast
in mobile ad hoc networks using network coding," IEEE Trans. on
Communications, vol. 54, no. 11, Nov. 2005.

[4] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, "The benefits
of coding over routing in a randomized setting," in Proc. of IEEE
International Symposium on Iriformation Theory, Jun. 2003.

[5] C. Gkantsidis and P. Rodriguez, "Network coding for large scale file
distribution," in Proc. of IEEE INFOCOM, Mar. 2005.

[6] Z. Liu, C. Wu, B. Li, and S. Zhao, "UUSee: Large-scale operational
on-demand streaming with random network coding," in Proc. of IEEE
INFOCOM, Mar. 2010.

[7] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, "Trading structure
for randomness in wireless opportunistic routing," in Proc. of ACM
SIGCOMM, Aug. 2007.

[8] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger,
"Byzantine modification detection in multicast networks using random­
ized network coding," in Proc. of IEEE IEEE International Symposium

on Information Theory, Jun. 2004.
[9] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard,

"Resilient network coding in the presence of byzantine adversaries," in
Proc. of IEEE INFOCOM, May 2007.

[10] M. Krohn, M. Freedman, and D. Mazieres, "On-the-fly verification of
rateless erasure codes for efficient content distribution," in Proc. of IEEE
Symposium on Security and Privacy, May 2004.

[11] C. Gkantsidis and P. Rodriguez, "Cooperative security for network
coding file distribution," in Proc. of IEEE INFOCOM, Apr. 2006.

[12] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, "An efficient signature-based
scheme for securing network coding against pollution attacks," in Proc.

of IEEE INFOCOM, Apr. 2008.
[13] F. Zhao, T. Kalker, M. Medard, and K. J. Han, "Signatures for content

distribution with network coding," in Proc. of IEEE IEEE International
Symposium on Iriformation Theory, Jun. 2007.

[14] D. Boneh, D. Freeman, 1. Katz, and B. Waters, "Signing a linear sub­
space: Signature schemes for network coding," in Proc. of International
Coriference on Practice and Theory in Public Key Cryptography, 2009.

[15] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, "An efficient scheme for
securing XOR network coding against pollution attacks," in Proc. of
IEEE INFOCOM, Apr. 2009.

[16] S. Agrawal and D. Boneh, "Homomorphic MACs: MAC-based integrity
for network coding," in Proc. of International Conference on Applied
Cryptography and Network Security, Jun. 2009.

[17] Y. Li, H. Yao, M. Chen, S. Jaggi, and A. Rosen, "RIPPLE authentication
for network coding," in Proc. of IEEE INFOCOM, Mar. 2010.

[18] E. Kehdi and B. Li, "Null keys: limiting malicious attacks via null space
properties of network coding," in Proc. of IEEE INFOCOM, Apr. 2009.

[19] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. P inkas,
"Multicast security: A taxonomy and some efficient constructions," in
Proc. of IEEE INFOCOM, Mar. 1999.

[20] P. A. Chou, Y. Wu, and K. Jain, "Practical network coding," in Proc. of
the Allenon Conference, Oct. 2003.

[21] D. Boneh and M. Franklin, "An efficient public key traitor tracing
scheme," in Proc. of CRYPTO'99, Aug. 1999.

[22] J. Katz and Y. Lindell, Introduction to modern cryptography. Chapman
& HaIVCRC, 2008.

[23] P. L. Montgomery, "Modular multiplication without trial division,"
Mathematics of Computation, vol. 44, no. 170, pp. 519-521, 1985.

[24] Y. Fan, Y. Jiang, H. Zhu, and X. Shen, "An efficient privacy-preserving
scheme against traffic analysis in network coding," in Proc. of IEEE
INFOCOM, Apr. 2009.

[25] P. Zhang, Y. Jiang, C. Lin, Y. Fan, and X. Shen, "P-Coding: Secure
network coding against eavesdropping attacks," in Proc. of IEEE INFO­
COM, Mar. 2010.

[26] Y. Jiang, Y. Fan, X. Shen, and C. Lin, "A self-adaptive probabilistic
packet filtering scheme against entropy attacks in network coding,"
Computer Networks, vol. 53, no. 18, pp. 3089-3101, Dec. 2009.

[27] A. Yun, 1. H. Cheon, and Y. Kim, "On homomorphic signatures for
network coding," IEEE Trans. on Computers, vol. 59, no. 9, pp. 1295-
1296, Mar. 2010.

ApPENDIX

PROOF OF THEOREM 5

Proof" For each node Wi and any set A of c nodes, the
probability that a specific key k is safe can be calculated by:

Pr (k is safe lwi, A) = (1 __
1

)c
1

_ <
(

1
)

(13)
c+1 c+1 e c+1

Then the expected number of safe keys can be derived by:

E(# of safe keys lwi' A) = (IKI
)

= m (14)
ec+1

Using Chernoff bound, we have:

62
Pr (# of safe keys < (1 - 6)m lwi' A) < exp(-2m) (15)

Based on this, the probability that there exists a node Wi and
a set A of c nodes, such that the number of safe keys is less
than (1 - 6)m, can be calculated by:

h=Pr (U (# of safe keys < (1 - 6)m)lwi' A)
A,Wi

< L Pr (# of safe keys < (1 - 6)m lwi, A)
wi,A

<n (N) ex p (_ 62
m) < NC+1exp(_ 62

m)
c 2 2

62 2
=exp((c + 1) In N - 2 (

62
b + 1) (c + 1) In N))

=exp(- 'Y (c + 1) In N)
=N--y(c+l)

As 'Y --t 00, h --t 0, meaning that the number of safe keys
given any Wi and A is no less than (1 - 6)m. Then the
probability that a randomly chosen key from K is safe for
all A and Wi is

(1 - 6)m 1 - 6 r > = --;----,-
IKI e(c+ 1)

(16)

If the source randomly chooses l keys from K, then the
probability that no safe key is selected can be calculated by:

u = (1- r)l < (1-
1- 6

)1�e(c+l)ln� < E. (17) e(c + 1)
Thus, the double-random key distribution scheme is c-secure
with probability no less than 1 - E. •

1034

