
This paper was presented as part of the main technical program at IEEE INFOCOM 2011 

Padding for Orthogonality: Efficient Subspace 

Authentication for Network Coding 

Peng Zhang*, Yixin Jiang*, Chuang Lin*, Hongyi Yaot, Albert Waser+ and Xuemin (Sherman) Shen+ 
*Tsinghua National Laboratory for Information Science and Technology, 

Dept. of Computer Science and Technology, Tsinghua University, Beijing, China 
tDept. of Electrical Engineering and Computer Science, California Institute of Technology, USA 

+Dept. of Electrical and Computer Engineering, University of Waterloo, Ontario, Canada 

Abstract-Network coding provides a promising alternative to 
traditional store-and-forward transmission paradigm. However, 
due to its information-mixing nature, network coding is notori­
ously susceptible to pollution attacks: a single polluted packet can 
end up corrupting bunches of good ones. Existing authentication 
mechanisms either incur high computation/bandwidth overheads, 
or cannot resist the tag pollution proposed recently. This paper 
presents a novel idea termed ''padding for orthogonality" for 
network coding authentication. Inspired by it, we design a public­
key based signature scheme and a symmetric-key based MAC 
scheme, which can both effectively contain pollution attacks 
at forwarders. In particular, we combine them to propose a 
unified scheme termed MacSig, the first hybrid-key cryptographic 
approach to network coding authentication. It can thwart both 
normal pollution and tag pollution attacks in an efficient way. 
Simulative results show that our MacSig scheme has a low 
bandwidth overhead, and a verification process 2-4 times faster 
than typical signature-based solutions in some circumstances. 

I. INTRODUCTION 
Network coding provides a new data transmission paradigm, 

in which intermediate nodes are allowed to code/mix pack­
ets rather than just forward them. This information-mixing 
based technique is proven capable of achieving maximized 
throughput [1], enhanced robustness [2], and lower energy 
consumption [3] for communication networks. Specially, ran­
dom network coding [4] is verified to have all the above 
features, and can be efficiently deployed in a distributed way. 
Due to its nice features, random network coding has already 
found applications in content distribution networks [5], P2P 

streaming networks [6], wireless mesh networks [7], etc. 
However, the information-mixing nature of network coding 

also renders it more susceptible to pollution attacks than 
traditional store-and-forward paradigm. Consider a scenario 
in which a commercial data center is distributing a file to 
a set of costumers via a network coded P2P network. An 
adversary pretends as a normal customer, by downloading and 
contributing packets of the file. In this process, it generates 
corrupted packets and contributes them to its peers. After being 
coded with other packets, a single corrupted packet can result 
in tens or even hundreds of polluted ones. This may cause 
legitimate users unable to download the file properly. 

Existing schemes include information-theoretic schemes 
[8], [9], and cryptography-based schemes [10]-[18]. For 
information-theoretic schemes, they can only passively tolerate 
pollution at sinks, but not actively prevent them. On the other 

hand, cryptography-based schemes enable forwarders to verify 
the integrity of their received packets, so that corrupted packets 
can be discarded before polluting good ones. This paper only 
considers the cryptography-based schemes, which can be fur­
ther grouped into two classes. The first class includes schemes 
[10]-[14] that are built on public-key based techniques, such 
as homomorphic hash, homomorphic signature, etc. These 
schemes are provably secure under the hardness assumptions 
of well-known cryptographic problems, but will incur high 
computation overhead at forwarders. The second class are 
schemes [15]-[18] which involve symmetric-key encryptions 
that are computationally efficient. The main disadvantages of 
schemes in this class include that they incur a larger bandwidth 
overhead and must carefully manage the keys. 

This paper approaches the problem of network coding 
authentication using a novel idea called "padding for orthog­

onality": the source pads each packet with an extra symbol, 
so that the subspace spanned by these padded packets is 
orthogonal to a specific vector; forwarders check the integrity 
of a received packet by verifying whether it maps this vector 
to zero. Based on this idea, we propose a public-key based 
scheme and prove its security under the hardness assumption 
of discrete logarithm problem. In addition, we also propose a 
symmetric-key based scheme that is secure against a coalition 
of c adversaries. Most importantly, we carefully combine them 
to propose MacSig - the first hybrid-key based approach to 
network coding authentication. 

Our MacSig scheme offers the following primary features: 
(1) Security against Pollution. It can effectively not only 
thwart normal pollution attacks, but also resist tag pollution 

presented in [17]. (2) Bandwidth Efficiency. It requires a 
smaller number of tags for each packet compared with [16] 

(which uses the key distribution scheme given in [19]). (3) 

Computation Efficiency. It needs a moderate/small number 
of symmetric-key/public-key cryptographic operations. Simu­
lations show that its verification process is 2-4 times faster 
than typical signature-based schemes [12]-[14] in some cir­
cumstances. 

The rest of this paper is organized as follows. Section II 
gives a formal statement of the problem to be studied. Section 
III presents our basic idea, and introduces two authentication 
schemes based on it. Section IV proposes a hybrid-key authen­
tication scheme, whose performance is evaluated in Section 

978-1-4244-9921-2/11/$26.00 ©2011 IEEE 1026 



V. Section VI discusses how our schemes can be adapted to 
function in a more general case. Section VII surveys some 
related work, and Section VIII concludes. 

II. PROBLEM STATEMENT 

A. Network Model 

We consider a typical multicast scenario, in which a source 
S needs to deliver a series of packets �l' �2 '  ... '�m to 
multiple receivers {Ri}. Each packet �i is represented as a 
vector (;fi,1 ,;fi,2 '  ... ,;fi,n) of finite field IF�, where p is a 
prime. 

For each �i' the source S generates an augmented packet 
Xi by prefixing �i with the ith unit vector of dimension m: 

m 

Xi = (0, ... , 0, 1, 0, ... , 6, ;fi,l '  ;fi,2 '  ... ,;fi,n) (l) 
� 

i-I 

Let V denote the subspace spanned by Xl , X2 , ... , Xm, and 
term Xi as the ith basis vector of V. Then S sends vectors in 
V and the network is responsible for replicating of V at each 
receiver Ri, who can derive �l'  ... '�m by computing the m 

basis vectors of V via Guassian eliminations. 
Specifically, for random network coding the source sends 

linear combinations of packets using randomly selected coeffi­
cients. For example, linearly combining packets Xl ,  X2 , ... , Xl 
using coefficients (}:l , (}:2 , ... ,(}:l results in 

I I I 
Y = L (}:iXi = (L (}:iXi,l ,···, L (}:iXi,m+n) (2) 

The first m symbols of yare termed as its coding coefficients. 

Intermediate nodes linearly combines their received packets 
for output in a similar way. Then a receiver Ri can recover 
V exactly after receiving m linearly independent packets. In 
fact, any m received packets are linearly independent with a 
high probability given the filed size p is sufficiently large [4]. 

In this paper, we consider a more realistic setting, in which 
the data D to be sent consists of more than m packets. Using 
the technique introduced in [20], S should first break D into 
multiple generations: 

D = [�l '··· '�h'··· '�(n-l)h+l '··· ,�nh,···J (3) 
""-v---" ' " 

G1 On 
Then S sends D as a stream of generations, with network 
coding only performed among packets belonging to the same 
generation. 

B. Adversary Model 

The adversary is aimed at injecting a small number of 
corrupted packets into the network to cause a large scale 
of pollution. To achieve this goal, he strives to collect legal 
packets and forge corrupted ones that can pass the verification 
of other innocent nodes. Without loss of generality, we assume 
the source is always trusted, but the relay nodes can be 
compromised. By compromise, we mean that the adversary 
can read the memory, monitor the input, and control the output 

of a compromised node. In this paper, we allow the adversary 
to compromise a coalition of nodes to launch more effective 
attacks. Finally, we assume that the adversaries are aware of 
our authentication scheme, but are bounded in computation 
power, and can only perform polynomial-time algorithms. 

III. HOMOMORP HIC SUBSPACE AUTHENTICATION 

In this section, we first introduce the basic idea of "padding 

for orthogonality", and then propose two different schemes 
for network coding authentication: the Homomorphic Sub­

space Signature (HSS), and the Homomorphic Subspace MAC 

(HSM). 

A. Basic Idea Overview 

Noted from our network model, although packets undergo 
rounds of coding processes at forwarders, the linear subspace 
V spanned by them stays constant. We can check the integrity 
of a packet w by verifying whether w E V. Based on this 
observation, we can characterize V using a vector v randomly 
chosen from its orthogonal subspace, and let forwarders check 
whether w . vT = O. This approach catches an essential 
property of network coding - the invariance of linear sub­
space, and inspires some appealing schemes [13], [14], [18]. 

However, it still has two practical problems unsolved: (1) For 
different generations, the source should calculate different v's, 
and distribute them prior to transmission, which can cause a 
high startup latency. (2) These v's should also be authenti­
cated, meaning that an extra secure channel is required. 

m 

m+n 

m+n+) 

1 ... 1 
Source packets 

L-L-'--L-LI _ .. ·--,--1 ...L--"ma""" V 

x 

Fig. 1: The idea of "padding for orthogonality" 

m+n+\ 

Now, we present a novel approach called "padding for 

orthogonality" to overcome these two problems. By this 
approach, the source randomly samples a vector v of length 
m + n + 1 at the bootstrap stage, and for every generation, the 
source pads each packet with an extra symbol/tag, so that its 
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inner product with v equals zero, as shown in Fig. 1. Then the 
subspace V spanned by these augmented packets is orthogonal 
to v. To verify a packet w, a relay node just checks whether 
W . vT = 0. Clearly, using this approach, we don't have to 
pre-distribute v's per generation using a secure channel; we 
just need m tags which cause no startup latency. 

To make this approach function in presence of Byzantine 
adversaries, who attempt to forge tags for illegal packets, we 
consider the following two techniques. First, we can let the 
source keep v as a secret key, and based on it generate a 
public key which can be used by relay nodes to verify the 
integrity of packets. If it is sufficiently hard to derive v based 
on the public key, then relay nodes cannot successfully forge 
tags for any illegal packets. For the second solution, we let 
the source keep a pool P of v's, and pad each packet with 
multiple tags generated according to these v's; each relay 
node is assigned with a subset of P, and can only verify a 
packet against part of its tags. If these v's are distributed 
properly, a corrupted packet generated by a malicious node 
will fail the verifications of other nodes with high probability. 
The following Homomorphic Subspace Signature (HSS) and 
Homomorphic Subspace MAC (HSM) scheme are designed 
using these two techniques, respectively. For simplicity of 
introduction, we assume that the transmission consists of only 
one generation. We will discuss the multiple-generation cases 
later in Section VI. 

B. The Homomorphic Subspace Signature 

The Model. A Homomorphic Subspace Signature (HSS) is 
defined as a tuple of four probabilistic polynomial-time (PPT) 
algorithms (Setup,Sign,Combine, Verify): 

• Setup. Input: 1 k, the security parameter, and N, the 
length of vectors to be signed. Output: a prime number 
q, a secret key Ks, and a public key Kp. 

• Sign. Input: a vector x E IF;:, and the secret key Ks. 
Output: a vector x = (x,O"), where 0" E lFq is termed as 
the signature of x. 

• Combine. Input: l vectors xl, ... , Xl, where Xi = (Xi E 
IF;: , 0" i E IF q ), and l coefficients al, ... , ai, where ai E 
IF q. Output: a vector X = (2:�=l aiXi , 0" E IF q ). 

• Verify. Input: a vector X = (x ElF;:, 0" E IF q ), and the 
public key Kp- Output: either 1 (accept), or 0 (reject). 

An HSS is said to be correct if the following two conditions 
are satisfied: 

(1) Verify(Sign(x, Ks), Kp) = 1 and 

(2) Verify(xi' Kp) = 1 for i = 1, ... ,l =} 
Verify(Combine(Xl, ... , Xl; al , ... , al) , Kp) = 1 

An HSS is said to be secure if for any PPT adversary A, 
the probability that A wins the security game HSS-GAME 
defined below is negligible in the security parameter k: 

• Setup. The adversary A specifies parameters 1 k and N. 
The challenger C runs Setup(l k, N) to generate q, Ks 
and Kp, of which it sends q and Kp to A. 

• Query. A adaptively submits vectors Xl, ... ,Xm to C, 
who runs Sign for these vectors and sends the correspond­
ing Xl, ... , Xm to A. 

• Forge. A generates a vector y = (y E IF;:, 0" E IF q ) with 
y rt- span(xl, ... ,Xm ) . IfVerify(y , Kp ) = 1, then A 
wins; otherwise A loses. 

Remarks. When applying the above HSS scheme to the 
network coding model given in Section II-A, we can just let 
N = m + n and q = p. 
The Construction. Based on the above model, we give our 
construction of HSS. 

• Setup. Given 1 k and N, perform the following steps: (1) 

choose a prime number q > 2k; (2) find a multiplicative 
cyclic group G of order q, and select a generator g for G; 

(3) set {3 !!.- IF;:lF�, and calculate h = (gf31, ... ,gf3N+l). 
Output q, Ks = {3, and Kp = h. 

• Sign. Given x E IF;: and {3, calculate the signature 0" = 

-(2:!l (3iXi)/(3N+l. Output X = (X, 0") . 

• Combine. Given Xl, ... , Xl, where Xi E IF;:+l, and 
al ,··. , ai, where ai E lFq. Output X = 2: �=l aixi· 

• Verify. Given X E IF;:+l and h, calculate 6 = hre � 
f1!�l 

hi'. Output 1 if 6 = 1, or 0 otherwise. 

Theorem 1. Our construction of HSS is correct. 

Proof" Let X = Sign(x, (3), then it is easy to verify 
that X . {3T = 2:!�l 

xi(3i = 0, and then 6 = hre = 
gre.f3T = 1. Thus Verify(x, h) = 1, and Condition (1) holds. 
Similarly, it is easy to verify that any vector X which passes 
the verification must satisfy X . {3T = o. Therefore, if we 
assume Xl, ... , Xl pass the verification, then {3 is orthogo­
nal to the subspace V = span ( Xl, ... , Xl ). By definition, 
y = Combine(xl, ... , Xl; al ,··· , al) E V, then y . {3 = 0, 
and Verify(y, h) = 1. Thus Condition (2) also holds. • 

Theorem 2. Our construction of HSS is secure. 

Proof" Suppose A wins the security game with some y = 
(y,O"). Since y rt- span(xl, ... , xm ), it immediately follows 
that y rt- span(xl, ... , Xm ). In addition, we have hii = 1 
and hrei = 1, i = 1, ... , m. By employing the techniques 
given in Section 3.2 of [21], A can also solve the discrete 
logarithm problem over G with a probability at least 1 -l/q. 
Note that for any PPT algorithm, the probability that it solves 
the discrete logarithm problem over a cyclic group of order 
q = 2k is negligible in k [22]. Thus, for any PPT adversary 
A, the probability that it wins HSS-GAME is also negligible 
in k. • 

C. The Homomorphic Subspace MAC 

The Model. Similar to HSS, a Homomorphic Subspace MAC 

(HSM) is defined as a tuple of four probabilistic polynomial­
time (PPT) algorithms (Setup,MAC,Combine,Verify): 

• Setup. Input: 1 k, the security parameter, and N, the 
length of vectors to be authenticated. Output: a prime 
number q, a set K consisting of r MAC keys. 
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• MAC. Input: a vector x E IF;:, and the key set K. Output: 
a vector x = (x, t1, ... , tr), where ti E lFq is a MAC of 
x calculated using the ith MAC key. 

• Combine. Input: l vectors Xl, ... , Xl, where Xi = (Xi E 
IF;:, Ti E lF�), and l coefficients a1, ... , ai, where ai E 
IF q. Output: a vector X = (2:�=1 aiXi , T E lF�). 

• Verify. Input: a vector X = (Xi E IF;:,T E lF�), and a 
key set K' C K. Output: either 1 (accept), or 0 (reject). 

An HSM is said to be correct if the following two conditions 
are satisfied: 

(1) Verify(MAC(x, K), K) = 1 and 

(2) Verify(xi, K) = 1 for i = 1, ... , l => 
Verify(Combine(x1' ... ' Xl; a1 , ... , al) , K) = 1 

An HSM is said to be secure if for any PPT adversary A, 
the probability that A wins the security game HSM·GAME 
defined below is no greater than l/qd: 

• Setup. The adversary A specifies parameters 1 k and N. 
The challenger C runs Setup(1 k , N) to generates q and 
K. Then it randomly selects two key sets K' C K and 
K" C K, with IK"\K'I = d, and sends K' to A. 

• Query. A adaptively submits vectors Xl . ... , Xm to C, 
who runs MAC for these vectors, and sends to A the 
MACs T1, T2, ... , Tm, where Ti = {ti,l, ... , ti,r}. 

• Forge. A chooses a vector y tf. span(x1, ... , xm). 
Then for each i = 1, ... , r, it calculates the MAC ti 
if ki E K', or randomly forges the MAC ti if ki tf. K'. If 
VerifY((Y,h, ... ,tr) , K") = 1, then A wins; otherwise 
A loses. 

Remarks. Different from homomorphic subspace signatures, 
an HSM uses symmetric keys, i.e., MAC keys, for authentica­
tion. The advantage is that forwarders can perform the Verify 
procedure much more efficiently. However, an adversary can 
also easily forge MACs for illegal packets if all MAC keys 
are publicized. Thus, we require that the source hold a set K 
of MAC keys, and each relay node be assigned with a random 
subset of the K. In this way, each forwarder can only forge 
some MACs correctly for an illegal packet. If the receiver of 
this illegal packet has some MAC keys that the adversary does 
not have, then it can successfully detect the forgery. HSM· 
GAME characterizes this security requirement, by simulating 
a scenario in which a malicious node with key set K' attempts 
to forge MACs that pass the verification of another node with 
key set K". 
The Construction. Based on the above model, we give our 
construction of HSM. 

• Setup. Given 1 k and N, choose a prime number q > 2k, 
and set 'Yi = h'i,l, ... , 'Yi,N+1) !!:- IF;:lF� for each i = 
1, ... , r. Output K = ('"'f1, ... , 'Yr) . 

• MAC. Given x E IF;: and K, calculate a tag ti = 

��;=1 'Yi,jXj)/'Yi,N+1 for each i = 1, ... , r. Output 
x - � x, h, ... , tr ). 

• Combine. Given x!, ... , Xl, where Xi E IF;: +r, and 

a!, ... , ai, where ai E lFq, output X = 2: �=1 aixi· 

• Verify. Given X E IF;:+r and K' C K, calculate �i = 
2:f=l 'Yi,jXj + 'Yi,N+1XN+i, for each 'Yi E K'. Output 1 
if all �i = 0, or 0 otherwise. 

Theorem 3. Our construction of HSM is correct. 

Proof" For r = 1, the proof is much similar to that of 
Theorem 1, and it is easy to extend the proof to cases of 
r > 1. We omit the details here due to the limit of space. • 
Theorem 4. Our construction of HSM is secure. 

Proof" For each i = 1, ... , r, we consider the following 
three cases: (1) 'Yi E K'. A can accurately calculate the MAC 
ti which evaluates �i to zero. (2) 'Yi tf. K' and 'Yi tf. K". Any 
ti E IF q is valid since it will not be checked. (3) 'Yi tf. K' 
but 'Yi E K". After the Query step, A can get the following 
group of equations regarding 'Yi: 

T . 'Yi = 0 (4) 

which has pN+1-R solutions for 'Yi, where R is row rank of 
the coefficient matrix. Suppose we insert into this group of 
equations with: 

(y,t) ·'YT = 0 (5) 

where y tf. span(x1, ... ,xm), t E lFq. Then the row rank of 
the coefficient matrix will be R+ 1, the solution set for 'Yi will 
have cardinality qN-R. This means that qN-R/qN+1-R = 
l/q of solutions to Eq. (4) can solve Eq. (5). As we assume 
that the MAC key 'Yi is sampled randomly from IF;: +1, the 
probability any t is a valid MAC that evaluates �i to zero is 
exactly 1/ q. Since there are totally d such i satisfying that 
'Yi tf. K' and 'Yi E K", the probability of �i = 0 for all these 
i is then l/qd. • 

D. MAC Key Distribution for HSM 

Recall in our construction of HSM, the probability that 
any packet polluted by a node A can pass the verification of 
another node B is bounded by 1/ qd, where d is the number 
of MAC keys held by B but not by A. This implies that 
the security level of HSM depends on how MAC keys are 
distributed among nodes in the network. In this subsection, we 
first formalize this problem of MAC key distribution, and then 
introduce our proposed scheme. We assume a strong adversary 
model, in which a set of compromised nodes can collude to 
launch pollution attacks. 
The Problem. Let n denote the set of all nodes except the 
source S, with I n I = N. Let K be the set of all MAC keys 
held by S. To each node Wi E n, S assigns a subset K(Wi) C 
K of MAC keys. For a set A c n, define its keys as K(A) � 
UwiEA K(Wi) . We say a key k E K is safe with respect to a 
node Wi and a set A, if k E K(Wi)\K(A). We say the key 
distribution scheme is c-secure if for any Wi E n and A c n 
with IAI :::; c, there is at least one safe key. 

Canetti et al. [19] introduce a probabilistic key distribution 
mechanism, in which every node Wi E n is assigned with any 
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key k E K with an equal probability Pa. They show that by 
letting IKI = e( c + 1) In � and Pa = C!l' the probability that 
there is at least one safe key for a randomly chosen Wi and 
A with IAI = c can be made higher than 1 - E. However, to 
achieve this for any Wi and A with IAI = c, i.e., to make the 
distribution mechanism c-secure with probability at least 1- E, 
IKI should be made no less than e(c + 1)21n N. This means 
that each packet should carry e( c + 1 )21n N MACs, which 
clearly does not scale when the network size N is large. To 
overcome this limitation, we propose a new approach using 
which the number of MACs per packet has no relation with 
N. 
Double-Random Key Distribution. Our proposed scheme, 
termed as Double-Random Key Distribution, gets its name 
because MAC keys are distributed via two random procedures: 
the first procedure assigns each node with a random set of 
keys, just like in [19]; the second one randomly selects keys to 
be used for MAC calculations. More specifically, in the second 
procedure, the source randomly selects a subset of l MAC 
keys from K for each generation. Then the source calculates l 
MACs using these keys for each packet. In addition, to inform 
forwarders of the selected keys, the source attaches the indexes 
of these l keys to each packet. 

The rationale of our proposed scheme is to introduce 
randomness when generating MACs at the source. This ran­
domness can prevent the adversary from knowing the keys 
used for MAC calculation before hand, and hence prevent 
the adversary from electively compromising nodes. Theorem 
5 shows that the number of MACs per packet has no relation 
with the N, meaning that the bandwidth overhead is scalable 
with the network size. 

Theorem 5. Let the number of secret keys be IKI = e(c + 
l)m, with m = -bh + l)(c + 1) InN, 1 > 0 and 0 < 6 < 1. 
Let the number of MACs per packet be l = 1�8e(c + 1) In � , 
and the key assigning probability be Pa = c!l. Then the 
probability that the double-random key distribution is c-secure 
is no smaller than 1 - E, when 1 -+ 00. 

Proof· See the Appendix. • 

IV. THE MAC SIG AUTHENTICATION SCHEME 

As shown in the previous section, the HSS scheme is proven 
secure under the hardness assumption of discrete logarithm 
problem, and it incurs a lower bandwidth overhead than HSM. 
However, in most cases, especially when computation power 
is constrained (e.g., WSN), we prefer the HSM scheme, since 
it puts less burden on forwarders. However, the recent work 
[17] reports that such homomorphic MAC based schemes (in­
cluding our HSM) may suffer from tag pollution. Fortunately, 
we observe that our HSS scheme can be utilized to help HSM 
thwart this attack. In this section, we first give preliminary to 
the problem of tag pollution, and then propose a novel scheme 
termed MacSig to solve it. 

A. Preliminary to Tag Pollution 

By tag pollution, an adversary aims to modify the tags 
(MACs for HSM) carried by packets rather than the contents 

of them. If a receiver of a packet with polluted tags does not 
have necessary keys to check at least one of them, it cannot 
detect and filter out this tag-polluted packet. It is possible that 
a packet with polluted tags travels multiple hops until it is 
finally detected and discarded, which can result in a waste of 
network bandwidth. 

Fig. 2: An example of tag pollution in HSM 

For a concrete understanding, consider the example given 
by Fig. 2, in which there are one adversary A, one receiver 
D, and some relay routers. Each packet is attached with four 
MACs. A pollutes two MACs tl and t3 in both its output 
packets Xl and X2. As Rl can verify the packet Xl against its 
MAC t3 using k3, it can detect the tag pollution and discard 
Xl. However, since R2 has neither kl nor k3, X2 will pass 
the verification of R2 and encode into another two packets X3 
and X4. As D just extracts the content of X3, it is not affected 
by the polluted MACs. On the other hand, packet X4 will 
be discarded at node R3. As a result, the bandwidth of link 
R2 -+ R3 is wasted. For a worse case in which a tag-polluted 
packet can travel more hops and infect more packets before 
being detected, the bandwidth waste will be considerable. 

B. MacSig: The Proposed Scheme 

We propose a novel scheme termed MacSig, which uses 
both homomorphic MACs and signatures for packet authenti­
cation. The basic idea is shown in Fig. 3(a), where the packet 
content is authenticated by homomorphic MACs, and these 
MACs are further authenticated by a homomorphic signature. 
In real implementation of SigMac, we also let the signature 
authenticate part of the packet content (reasons to be given in 
Section IV-C). Specifically, we let the signature authenticate 
both the MACs and coding coefficients of the packet, as shown 
in Fig. 3(b). 

In the following, we give the details of our MacSig scheme. 
For convenience of demonstration, we first assume the key 
distribution scheme in [19], and then show how our double­
random approach can be used in MacSig. Similar to the 
construction of HSS and HSM introduced in Section III, our 
MacSig consists of four probabilistic polynomial-time (PPT) 
algorithms. 
Setup: The source performs the following five steps: (1) 

find a multiplicative cyclic group G of order p, and se­
lect a generator 9 for G. (2) sample the secret key {3 = 
((31, . . .  ,(3m+l+d .!!:- l8'�+Il8';. (3) compute the public key 
h = gf3 £. (gfh, . . .  ,gf3=+I+! ). (4) sample a pool of MAC keys 

K = biH=l' where Ii = hi,l, . · ·  '1i,m+n+l) .!!:-l8'�+nl8';. 
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(a) 

(b) 

coefficients JIt 
.... --

.... , packet symbols � \ 

1 1 1 ... 1 1 1 1 I··· 1 HI<I ... I>� , I 

--- ---
� packet symbols 

I /t-<.::::.�'..... 
1 1 I··· 1 1 1 1 1 I· .. [ 11>1 ... IH§8§ 
\ ) 

coefficients 

Fig. 3: Basic idea of the MacSig authentication scheme. 

(5) for each MAC key, assign it to each node with an equal 
probability Pa. 
MAC+Sign: The source performs the following three steps: 
(1) for the ith source packet Xi, attach l MACs {ti,l , ... , ti,d, 
where ti,j is calculated as: 

",m+n 
t .. -

- L-r=l 'Yj,rXi,r 
't,J -

'Yj,m+n+1 
(6) 

(2) attach the signature (Ji to Xi, where (Ji is calculated as: 

(Ji = 
- 2:7=1 (3jXi,j + 2:�=1 (3j+mti,j 

(7) 

(3) output the resultant packet Xi = (Xi , ti,l ,.··, ti,l , (Ji), 
which has length m + n + l + 1. 
Combine: Relay nodes performs standard random network 
coding over incoming packets to generate output ones. 
Verify: For each incoming packet y, the relay node calculates 
the value of (j using 

m 1+1 
(j = II hfi II h;,=�n+i 

i=l i=l 
(8) 

Y is rejected if (j -I- 1; otherwise the verification process 
continues. Using each of its MAC keys "ti, the relay node 
calculates the value of �i using: 

m+n 
�i = L 'Yi,rYr + 'Yi,m+n+1Ym+n+j (9) 

r=l 

Y is rejected if these exists a �i -I- 0; otherwise it is accepted. 
To employ the double-random key distribution in MacSig, 

we alternatively let the source sample IKI > l MAC keys, 
and randomly select l from them to calculate MACs in each 
generation. Also, the source should attach the indexes of the 
l selected keys to each packet Xi. The value of IKI and l can 
be determined according to Theorem 5. 

C. Security Analysis 

Theorem 6. The MacSig authentication scheme is secure 
against tag pollution. 

Proof First, we give some notations in this proof. Let 
X = (x, t) denote a packet, where X = (Xl , X2 ,·· ., xm ) 

are messages symbols, and t = (it, t2 , ... , tl , (J ) are tags. 
Let V be the subspace spanned by the m source packets 
Xl , X2 , ... , Xm, and T be the subspace spanned by their 
respective tags t1 , t2 , ... , tm . 

We consider an attack scenario comprised of an adversary 
node A, and an innocent node I. Let KI be the set of 
MAC keys assigned to I, with b = IKII > O. Without 
loss of generality, we assume KJ = b1, "12 , ... , 'Yb}, with 
"Ii corresponding to the ith MAC of a packet. The goal of A 
is defined as: given a packet y = (y, t) E V, construct tags 
t' -I- t so that the packet y' = (y, t') passes I's verification. 

Suppose that the authentication approach given in Fig. 
3(a) is employed. Then t' should satisfy the following two 
conditions: (I) t' E T (by Theorem 2); (2) t� = ti for each 
i = 1,2, ... , b (since message symbols are not modified). 
Let Y1 , Y2 , ... , Ym be any m linearly independent packets 
belonging to V, with Yi = (Yi , ti). Then any t' that satisfy 
the above two conditions can be represented as: 

t' = Q(tf , tI ,··· , t;'f (10) 

with Q subjected to: ( t1,1 , t1,2 , 
t2,1 , t2,2 , 

Q . 

t�,l ' t�,2 ' 

(11) 

it,b ) 
t2 b 

:
' =(it ,t2 , ... ,tb) 

tm,b 

Let A be the column rank of the coefficient matrix. Assume 
that b < m, then we can obtain pm->. solutions for Q, meaning 
that there will be pm->. possible t'. As only one of these t' 
is equal to t, the tag pollution will succeed with a probability 
of 1 - l/pm->.. Thus, the verification approach given by Fig. 
3(a) is not secure. 

Now suppose the MacSig scheme is employed instead. In 
this case, Condition (2) remains the same, while Condition (1) 

should be changed to: (Y1 , Y2 , ... , Ym, t') E T', where T' is 
the subspace spanned by the first m and the last l + 1 symbols 
of source packets Xl , X2 , ... , xm. As a result, the equations 
that Q is subjected to becomes: ( Y1,1 , 

Y2,1 , 
Q. . 

Ym,l , 

... , Y1,m , t1,1 , 

... , Y2,m , t2,1 , 

. .. , Ym,m, tm,l , 

(12) 

where the first m columns are introduced by the new Condition 
(1). As these m columns are linearly independent, the column 
rank of the coefficient matrix will be m. Then there is only 
one solution for Q, using which A can only construct a t' = t. 
Thus tag pollution is not possible. • 

V. PERFORMANCE EVALUATION 

This section studies the performance of our MacSig au­
thentication scheme in terms of bandwidth and computation 
overhead. 
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A. Bandwidth Overhead 

We neglect the bandwidth consumed by the key distribution 
in the Setup stage, since it can be done offline. The online 
bandwidth overhead per packet includes l MACs, l MAC 
key indexes, and a signature. Since MACs and signatures are 
defined over IF p, just as message symbols, they both have size 
of Ipi = IIOg2 P 1 bits. Next, we determine the size of a MAC 
key index. As there are IKI = j,e(c + 1)2(-y + 1) InN MAC 
keys in total, a key index can be represented by A = lIog21K11 
bits. To get a sufficiently large A, we assume an extreme case 
where c = 10, 'Y = 1000 and N = 1000 (then the probability 
h in the proof of Theorem 5 will be less than 10-12). For this 
case, A equals 29, but we choose A = 32 instead for sake of 
byte alignment. 

From the above analysis, the bandwidth overhead of the 
M S' h . 0 1+1 321 h l ac Ig sc eme IS b = m+n + Ipl(m+n)' w ere = 

1�8e(c+1) In �. We calculate Ob by fixing 6 = 0.1, n = 20m, 
Ipi = 128, and varying the values of n, c, E. Fig. 4 shows 
the relationship between bandwidth overhead per packet and 
packet size n (the number of symbols in each packet) for 
different c and E. We observe that the bandwidth overhead 
decreases with the packet size. Especially, when the packet 
size is larger than 700 symbols and the number of colluding 
adversaries is less than 3, the per-packet bandwidth overhead 
sits between 5% and 10%. 

Q) 
� 
o � 0.15 
Q; 
a. 
"0 
� 0.1 

.<::: 

� 
o 
.<::: " 0.05 
§ 
"0 
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tV 
.0 
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--e-c=1,Pr=99% 
-+-c;1,Pr-99.5% 
-+-c;1,Pr-99.9% 
-v-c;2,Pr-99% 
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packet length (symbols) 

1000 

Fig. 4: The per-packet bandwidth overhead of our MacSig 
scheme (c is the number of coalition, and Pr = 1 - E is the 
security probability). 

B. Computation Overhead 

For a similar reason with the last subsection, we will only 
consider the online computation overhead incurred by the last 
three stages. 

MAC+Sign. For each packet, the source needs (m + n + 1) l 
multiplications to calculate l MACs, and m + l + 1 multipli­
cations to generate the signature for these MACs. Thus the 
computation overhead in this stage is (m+n+1)l+(m+l+1) 
multiplications per packet. 

Combine. Let w be the average number of packets com­
bined in each network coding round, then an average of 
w(l + 1) multiplications are needed to combine the MACs 
and signatures of the corresponding packets. The computation 
overhead in this stage will not burden the relay nodes much 
more, considering the standard network coding still requires 

w(m + n) multiplications, with the packet size m + n much 
larger than the number of MACs l. 

Verify. First of all, we need to determine the compu­
tation complexity of exponentiation over IF p, since it is a 
key operation required by MacSig verification. We utilize 
the typical "square and multiple" method to calculate yX 
over lFp as follows. First we compute the value of y2Z 

for 
1 :::; z < lxi, where Ixl is the size of x in bits. Since half of 
the bits of x are zero on average, we need another � log21xl 
multiplications to obtain yX. Thus an exponentiation over IF p 
takes � Ipi multiplications. Secondly, to obtain a benchmark 
for the running time of multiplications over IF p, we implement 
the Montgomery multiplication algorithm [23] on a 2.0OGHz 
Intel Core 2 CPU. For the case of Ipi = 128, we observe that 
roughly 2.5 x 105 multiplications over lFp can be performed 
per second. 

Recall that to verify a packet in MacSig, m + l + 1 expo­
nentiations and (m+n+1)l multiplications are needed. Using 
the fact that an exponentiation is equivalent to � Ipl multiplica­
tions, the overhead of this stage is �lpl(m+l+1)+(m+n+1)l 
multiplications. Then we use the benchmark developed above 
to evaluate the verification time of our MacSig scheme. By 
fixing 6 = 0.1, n = 20m, Ipl = 128, E = 1/100, and varying 
n, c, we obtain the results as shown in Fig. 5. For comparison, 
we also include the other three signature-based schemes [12]­

[14], all of which require no less than m + n exponentiations 
to verify a packet. From Fig. 5, we observe that verification 
process in our MacSig scheme is 2 to 4 times faster than those 
of the other three. 

w 
.s 800 

� 
� 600 

Q; 
a. 

� 40 
. .., 

500 

-e- MacSig, c;1 

-&- MacSig, c;2 

--- MacSig, c;3 

-v- Other schemes 

600 700 800 900 

packet length (symbols) 
1000 

Fig. 5: The per-packet verification time of our MacSig scheme 
and those of the other three schemes [12]-[14] (represented 
as a single curve) 

VI. DISCUSSION 

In the above of this paper, we have introduced three au­
thentication schemes (HSS, HSM, and MacSig) by assuming 
single generation. If the transmission consists of multiple 
generations, the adversary can launch repetitive attack: collect 
legitimate packets of previous generations and use them to fake 
packets for subsequent ones. In the following, we discuss how 
to improve HSM and HSS so that they can resist this attack. 

For the HSM scheme, we assume that the source and 
other nodes share a common pseudorandom number generator 
(PRNG). At the Setup stage, the source samples a pool of 
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random seeds, and assigns these seeds to other nodes the same 
way as distributing MAC keys. Before each generation, all 
nodes run PRGN using their seeds to generating new MAC 
keys. In this way, different generation will use different MAC 
keys, and thus repetitive attack is not possible. 

For the HSS scheme, we consider the following two ap­
proaches. In the first approach, prior to each generation, 
the source randomly alters one element in the secret key, 
and informs other nodes of the changed element in the 
public key, just like the scheme in [13]. This approach can 
be effective when the adversary is unable collect legitimate 
packets with many zeros. In the second approach, we let the 

,, =+n to 
signature of a source packet Xi be (fi = g- 6j= =+1 PjX;,j. 
For each generation, the source signs and sends the m sig­
natures {(fi}�l of its packets, and forwarders check whether 
TIm+n hYi TIm Yi 1 Al . I . h" i=m+1 i i=l (fi = .  ternatlve y, smce t 1S slgnature 
scheme is homomorphic, we can have each signature travel 
with the packet it signs. In this way, we don't need an 
extra channel to transmit signatures in advance. Details of the 
implementation would be left for our future work. 

VII. RELATED WORK 

In the context of network coding, security threats such as 
traffic analysis, eavesdropping attacks, and entropy attacks 
have been studied in [24], [25], and [26], respectively. Among 
all the threats considered so far, pollution attacks are perhaps 
the most concerned ones. To thwart this kind of attacks, 
many schemes have been proposed. We classify them into two 
categories: Information-theoretic schemes and cryptography­
based schemes. 

Information-theoretic schemes aim to detect or correct 
polluted packets at sink nodes using information-theoretic 
approaches. For example, Ho et al. [8] present a scheme 
which extends the standard random network coding to support 
Byzantine modification detection, and Jaggi et al. [9] study the 
designing issue of error-correction codes which can help sink 
nodes recover corrupted packets. Although these information­
theoretic schemes are effective, they can only passively tolerate 
pollution at sinks. 

To actively prevent pollution from propagating among 
intermediate nodes, several cryptography-based schemes 
have been proposed. Some of these schemes use public-key 
cryptographic approaches. For example, in the innovative 
work of Krohn et al. [10], homomorphic hash function is 
proposed to enable on-the-fly verification for erasure codes. 
As the verification process requires nodes to compute expen­
sive homomorphic hash functions, the technique of hatched 

verification is employed. Gkantsidis et al. [11] extend this 
scheme to network-coding-based P2P networks, and further 
reduce the computation overhead by enabling cooperative 
verification among peers. One common limitation of these two 
schemes is that the hash values of the whole file should be 
computed at the source and delivered to downstream nodes 
in advance. To address this problem, Yu et al. [12] propose a 
homomorphic signature scheme on basis of homomorphic hash 
function and RSA cryptosystem. In their scheme, each packet 

carries a RSA-encrypted homomorphic hash, which functions 
as its homomorphic signature. A recent work [27], however, 
shows that this signature scheme is only conditionally valid, 
and may be vulnerable to trivial no-message attacks. From 
quite a different perspective, Zhao et al. [13] propose a 
signature scheme in which relay nodes check the integrity of 
packets by verifying whether they belong to the subspace of 
source packets. Boneh et al. [14] introduces another signature 
scheme similar to [13], but use signatures of a smaller size. 
However, both [13] and [14] still require extra secure channels 
to pre-distribute signatures, just like [10], [11]. To sum up 
the above public-key cryptographic approaches, they are not 
computationally efficient due to the expensive operations of 
homomorphic hashing or signatures. 

The inefficiency of public-key cryptographic approaches 
motives the use of symmetric-key cryptographic ap­
proaches, which involve very simple and efficient operations. 
In the scheme proposed by Yu et al. [15], the source attaches 
to each packet multiple MACs, each of which authenticates 
part of the packet. These MACs are encrypted using different 
keys at the source, and relay nodes can cooperatively check 
different MACs using their respectively shared keys. Agrawal 
et al. [16] propose a similar MAC-based scheme, which 
differs from [15] in that each MAC authenticates the whole 
packet. However, this scheme is unfortunately vulnerable to 
tag pollution, which can also degrade the system performance. 
Towards this problem, Li et al. [17] propose RIPPLE, a time­
based authentication protocol which utilizes delayed release 
of secret keys. One problem with RIPPLE is that it requires 
global synchronization among all nodes, which is not easy to 
be realized in distributed settings. Kehdi et al. [18] propose 
another symmetric-key based scheme, which utilizes null keys 

for verification. A null key is just a vector from the null space 
of the matrix formed by the source packets; legitimate packets 
are supposed to map null keys to zero. This scheme may incur 
a high bandwidth overhead since it injects into the network 
with multiple null keys for each generation. In sum, these 
symmetric-key cryptographic approaches are quite efficient in 
computation, but they have must carefully manage the keys, 
and can incur a relatively large bandwidth overhead. 

VIII. CONCLUSION 

In this paper, we study how to achieve network coding 
authentication in the presence of normal pollution and tag 
pollution attacks. The basic idea is to pad each source packet 
with an extra symbol to make it orthogonal to a given vector. 
Under this idea, we propose a signature-based scheme HSS. 
HSS doesn't need to pre-distribute signatures for each gener­
ation, and hence incurs no start-up latency. We also propose 
a MAC-based scheme HSM, which employs a double-random 
key distribution approach. The main advantages of HSM is 
that the number of MACs attached to each packet scales with 
the network size. By utilizing the techniques of both HSS and 
HSM, we finally propose a hybrid-key based authentication 
scheme MacSig. We demonstrate that the MacSig scheme 
can effectively resist both normal pollution and tag pollution 
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attacks, while incurring a relatively low overhead in bandwidth 
and computation. 
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ApPENDIX 

PROOF OF THEOREM 5 

Proof" For each node Wi and any set A of c nodes, the 
probability that a specific key k is safe can be calculated by: 

Pr (k is safe lwi, A) = (1 __ 
1

_)c_
1

_ < 
(

1 
) 

(13) 
c+1 c+1 e c+1 

Then the expected number of safe keys can be derived by: 

E(# of safe keys lwi' A) = (IKI 
) 

= m (14) 
ec+1 

Using Chernoff bound, we have: 

62 
Pr (# of safe keys < (1 - 6)m lwi' A) < exp( -2m) (15) 

Based on this, the probability that there exists a node Wi and 
a set A of c nodes, such that the number of safe keys is less 
than (1 - 6)m, can be calculated by: 

h=Pr ( U (# of safe keys < (1 - 6)m)lwi' A) 
A,Wi 

< L Pr (# of safe keys < (1 - 6)m lwi, A) 
wi,A 

<n (N) ex p (_ 62 
m) < NC+1exp(_ 62 

m) 
c 2 2 

62 2 
=exp( (c + 1) In N - 2 ( 

62 
b + 1) (c + 1) In N)) 

=exp( - 'Y ( c + 1) In N) 
=N--y(c+l) 

As 'Y --t 00, h --t 0, meaning that the number of safe keys 
given any Wi and A is no less than (1 - 6)m. Then the 
probability that a randomly chosen key from K is safe for 
all A and Wi is 

(1 - 6)m 1 - 6 r > = --;----,-
IKI e(c+ 1) 

(16) 

If the source randomly chooses l keys from K, then the 
probability that no safe key is selected can be calculated by: 

u = (1- r)l < (1-
1- 6 

)1�e(c+l)ln� < E. (17) e(c + 1) 
Thus, the double-random key distribution scheme is c-secure 
with probability no less than 1 - E. • 
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