
1738 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 9, OCTOBER 2012

ANOC: Anonymous Network-Coding-Based
Communication with Efficient Cooperation

Peng Zhang, Chuang Lin, Yixin Jiang, Patrick P.C. Lee, and John C.S. Lui

Abstract—Practical wireless network coding (e.g., COPE) is a
promising technique that can enhance the throughput of wireless
networks. However, such a technique also bears a serious security
drawback: it breaks the current privacy-preserving protocols
(e.g., Onion Routing), since their operations conflict each other.
As user privacy in wireless networks is highly valued nowadays,
a new privacy-preserving scheme that can function with wireless
network coding becomes indispensable.
To address such a challenge, we apply the idea of cooperative

networking and design a novel anonymity scheme named ANOC,
which can function in network-coding-based wireless mesh net-
works. ANOC is built upon the classic Onion Routing protocol,
and resolves its conflict with network coding by introducing
efficient cooperation among relay nodes. Using ANOC, we can
perform network coding to achieve a higher throughput, while
still preserving user privacy in wireless mesh networks. We
formally show how ANOC achieves the property of relationship
anonymity, and conduct extensive experiments via nsclick to
demonstrates its feasibility and efficiency when integrated with
network coding.

Index Terms—Network coding, anonymity, cooperative net-
working, Onion Routing.

I. INTRODUCTION

HOW to achieve high data throughput is a critical con-
cern in wireless networks. Recent studies show that

network coding [1], as an alternative to the traditional store-
and-forward paradigm, can remarkably enhance the network
capacity. In particular, authors in [2] propose COPE, the first
practical wireless network coding scheme for wireless mesh
networks [3]. In COPE, nodes operate in promiscuous mode,
and opportunistically perform data mixing (or coding) on the
packets to be forwarded to neighboring nodes. Fig. 1 shows
three basic coding scenarios in COPE [4]. In Fig. 1(a), node
S1 needs to send a packet P1 to D1, and this packet is relayed
by node C; while S2 needs to send a packet P2 to D2, also
relayed by node C. The dashed line means that D1 and D2

can overhear P2 and P1, respectively, due to the broadcast

Manuscript received 15 February 2011; revised 17 July 2011. This
work is supported by the National Basic Research Program of China (No.
2010CB328105, 2011CB302703, 2009CB320504), the National Natural Sci-
ence Foundation of China (No. 60932003, 60970101), the NSFC A3 Program
(No. 61161140320), the RGC’s AoE/E-02/08, and RGC 2150634. The work
of Patrick P. C. Lee is supported in part by grant GRF 413910 from the
Research Grant Council of Hong Kong.
P. Zhang and C. Lin are with the Department of Computer Science and

Technology, Tsinghua University, Beijing, China (e-mail: {pzhang, yxjiang,
clin}@csnet1.cs.tsinghua.edu.cn).
Y. Jiang is with the EPRI, China Southern Power Grid Co. Ltd., Guangzhou,

China (e-mail: yxjiang@csnet1.cs.tsinghua.edu.cn).
P. P.C. Lee and J. C.S. Lui are with the Department of Computer Science

and Engineering, Chinese University of Hong Kong, Hong Kong (e-mail:
{pclee, cslui}@cse.cuhk.edu.hk).
Digital Object Identifier 10.1109/JSAC.2012.121018.

S1 S2

D2 D1

CP1 P2

P1+P2

S1 S2 S1

S2

S3

S4

P1 P2
P1 P2

C C

P1+P2

Fig. 1. Basic coding scenarios of COPE [4].

nature of wireless channels. Without network coding, the
communication will cost four transmissions in total: (1) S1

sends P1 to C, (2) C forwards P1 toD1, (3) S2 sends P2 to C,
and (4) C forwards P2 to D2. On the other hand, with network
coding, the relay node C only needs to broadcast P1 ⊕ P2,
and then D1 can recover P1 by computing P2 ⊕ (P1 ⊕ P2);
D2 can recover P2 by computing P1⊕ (P1⊕P2). In this way,
one transmission will be saved at node C, and the network
throughput can be improved. Fig. 1(b) shows another possible
coding scenario where no overhearing is needed; Fig. 1(c)
gives a hybrid scenario that combines the former two cases.
In addition to throughput improvement, privacy preservation

is also an important concern in wireless communications since:
(1) online privacy is highly valued by wireless users nowadays;
and (2) the open-air traffic in wireless medium can be easily
monitored and traced. Consider for example, a scenario where
multiple clients can access a server S via a wireless mesh
network. Equipped with targeted antennas, an adversary can
easily intercept traffic by staying close to server S, and then
perform traffic analysis [5] so as to deduce the identities
of users who have accessed S. Depending on the specific
service provided by S, sensitive information, such as “who
has accessed a web page or downloaded a file”, will be
disclosed. It is important to note that end-to-end encryption
(e.g., SSL/TLS) only provides a limited form of privacy:
while end-to-end encryption hides application payload from
the adversary, the adversary can still learn the IP addresses of
the client and the server in a data session.
Many techniques are proposed to provide user privacy in

communication networks: Mix-Net [6], [7], [8], Onion Rout-
ing [9], [10], [11], and Crowds [12] are shown to be effective
in wired networks; ANODR [13], WAR [14], and Onion Ring
[15] are more suitable for wireless applications (please refer
to [16] for a detailed related work). However, when a wireless
network is upgraded to enable network coding, many of the
above privacy-preserving protocols will not be applicable. The
core reason is that the packet-mixing operations required by

0733-8716/12/$31.00 c© 2012 IEEE

ZHANG et al.: ANOC: ANONYMOUS NETWORK-CODING-BASED COMMUNICATION WITH EFFICIENT COOPERATION 1739

network coding are in conflict with the encryption/decryption
operations required by the privacy-preserving schemes at relay
nodes (details will be given in Section III). Considering the
rising privacy concern, as well as the increasing bandwidth
demand in wireless networks, an efficient privacy-preserving
scheme that can work with wireless network coding becomes
highly important.
To address the above issue, this paper proposes ANOC, i.e.,

Anoymous NetwOrk-Coding-based communication for wire-
less mesh networks. ANOC uses Onion Routing as its building
block, and resolves the conflict between Onion Routing and
network coding by introducing efficient cooperation (session-
key sharing and auxiliary decrypting) among relay nodes.
Specifically, we mainly address the following two challenges:
(i) how to trigger the session-key sharing in an on-demand
fashion, and (ii) how to efficiently and securely share session
keys with neighbors without leaking any information to ad-
versaries.
With these challenges addressed, we formally show that

ANOC can achieve a practical privacy requirement called
relationship anonymity (i.e., unlinkability [17]), meaning that
adversaries cannot associate any sender with the corresponding
receiver of a data session by simply observing the wireless
traffic. We also conduct extensive experiments via nsclick [18]
to show that ANOC can work efficiently with network coding
in wireless mesh networks.
In summary, our contribution is two-fold: 1) to the best of

our knowledge, this is the first paper to address the privacy
vulnerability of wireless network coding; 2) we propose,
implement, and evaluate a novel anonymous communication
scheme for network-coding-based wireless mesh networks,
using techniques of cooperative networking.
The remainder of this paper is organized as follows. Section

II gives a formal statement of the problem to be studied. Sec-
tion III motivates the basic idea of ANOC, the implementation
of which is detailed in Section IV. Section V and Section
VI present analytical and experimental results, respectively.
Finally, Section VII concludes the paper.

II. PROBLEM STATEMENT

A. System Model

We consider a typical wireless mesh network [3] consisting
of wireless routers and clients, as shown in Fig. 2. The routers
have minimal mobility and form the infrastructure for clients.
Some of these routers along the boundary of the network,
termed proxy routers, are responsible for setting up routes
for clients directly connected to them. The other routers,
termed relay routers, reside at the core of the network and
only forward packets along established paths. To enhance
data throughput, wireless network coding (i.e., COPE [2]) is
enabled in this mesh network: routers operate in promiscuous
mode and encode/decode relayed packets opportunistically.
We assume that as a basic security guarantee, end-to-end
encryption (e.g., SSL/TLS) has already been deployed so that
attackers cannot discover the content of packets.

B. Privacy Model

We now specify the privacy goal we aim to achieve for the
system defined above. For a data session that involves com-

Fig. 2. An example of wireless mesh network.

munication between a sender (i.e., the entity that originates
packets) and a receiver (i.e., the entity for which packets are
destined), three candidate privacy models given by [17] are
considered:

• Communication Unobservability: an adversary cannot
distinguish whether a communication exists or not.

• Sender/Receiver Anonymity: an adversary may ob-
serve a communication session, but cannot identify the
sender/receiver of such a session.

• Relationship Anonymity (or Unlinkability): an adversary
may identify a sender or a receiver of some communi-
cation, but cannot determine whether they are related or
not in the same session.

Note that from the above definitions, communication un-
observability offers the strongest privacy guarantee, while the
unlinkability offers the weakest among the three. However,
in practical systems, unobservability is mainly achieved by
injecting dummy/cover packets into networks, which con-
sumes a considerable amount of network bandwidth [19],
[20]. Similar performance degradation can be observed in
protocols that achieve sender/receiver anonymity. Take Crowds
[12] as an example, it provides sender anonymity for web
transactions. However, to hide a sender’s identity, other nodes
in the network need to probabilistically forward the sender’s
packets to each other. This will incur a large delay since each
packet will traverse many more extra hops before reaching
the receiver. In short, providing either communication unob-
servability or sender/receiver anonymity requires significant
network resources and may heavily degrade the performance
of legitimate applications.

On the other hand, relationship anonymity can be realized
with much smaller performance degradation, which is suitable
for wireless networks where bandwidth resources are generally
more limited as opposed to wireline networks. One successful
scheme that achieves relationship anonymity is Onion Routing
[9], which is inspired by Chaum’s Mix [6]. In general,
relationship anonymity is sufficient for most applications that
require privacy preservation, since an adversary cannot deduce
the sensitive information of “who is talking to whom”, even
though it can intercept traffic. Thus, to allow for practical
deployment, in this paper, we choose to achieve relationship
anonymity for the wireless mesh network that we consider.

1740 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 9, OCTOBER 2012

C. Adversary Model

Given the relationship anonymity as the privacy property to
preserve, we now define the capabilities of an adversary. The
adversary we consider is passive in nature, i.e., it passively
monitors network traffic, and will not drop, inject, or modify
any packets. The only goal of the adversary is to deduce the
information of “who is talking to whom” and establish the
sender-receiver relationships of data sessions. To achieve this,
the adversary can naively examine some identifiers (e.g., IP
addresses) contained in a packet to discover the sender or
receiver directly. If such identifiers are protected, the adversary
can still perform traffic analysis by content-correlation, size-
correlation, and time-correlation [5].
In this paper, we will classify the adversary into two

categories: (1) the external adversary, which monitors the
incoming and outgoing traffic of a target node by staying close
to the target node and overhearing packets via the wireless
channel; (2) the internal adversary, which compromises and
fully controls a target node, and passively analyzes the traffic
that traverses the target node. We assume that the proxy routers
are trustable, in the sense that they cannot be compromised
by internal adversaries.

III. OVERVIEW OF GENERAL FRAMEWORK

As noted in the current literature, the main task of achiev-
ing relationship anonymity is to prevent the adversary from
correlating input and output packets of relay nodes. This is
commonly achieved using schemes based on Chaum’s mix
[6], where packets are transformed before being forwarded.
In the following, we first demonstrate the infeasibility of

Chaum’s mix-based schemes in wireless network coding, and
then present the design rationale of our proposed scheme.
For clarity of explanation, we adopt the paradigm of Onion
Routing [9], a classic mix-based scheme that is the core of
many prior anonymous protocols [10], [11], [15]. However,
we emphasize that other mix-based schemes can also be used
as the building block of our proposed scheme in a similar
fashion.

A. Infeasibility of Onion Routing in Network Coding

Onion Routing [9] is an anonymous routing protocol that
can achieve relationship anonymity in traditional networks
without network coding. A typical Onion Routing system
consists of inter-connected routers called onion routers. Each
router i is loaded with a pair of public/private keys (uki, rki),
and the global knowledge of the network topology. In the
following, we briefly describe how Onion Routing works when
no network coding is used, using the simple cross topology
shown in Fig. 1(a).
Suppose that two end users U1 and U2, who are respectively

connected to routers S1 and D1, want to set up a session. In
Onion Routing, U1 first sends a connection request to S1.
On receiving this request, S1 determines a path to router D1

(in this case, the path is simply S1 → C → D1). Then S1

randomly selects two session keys skC1 and skD1 for C and
D1 respectively, and constructs a layered data structure called
an onion as {{skD1, U2}ukD1 , skC1, D1}ukC , where ukC and
ukD1 are the public keys of C and D1, respectively, and

1 2

2 1

P1 P2

1 2

P1 P2

P1

2

2

P2

1

1

Fig. 3. An illustration of how relay nodes cooperate to make Onion
Routing and network coding compatible. (·) and [·] denote the symmetric-key
encryptions performed by S1 and S2 on their data packets, respectively.

{·}k denotes the encryption using public key k. Then S1

sends this onion to C, which uses its private key rkC to
decrypt the onion. After decryption, C will obtain its session
key skC1, the next-hop router D1, and the embedded onion
{skD1, U2}ukD1 . This embedded onion is then forwarded to
D1, which decrypts it using its private key to get the session
key skD1. In addition,D1 will find that it is the last hop of the
route, as the next hop is the end user U2 connected toD1. Then
D1 forwards the connection request to U2, and a data session
is established. After the route establishment, data is trans-
mitted using symmetric-key encryptions. Specifically, using
the session keys previously assigned, S1 applies symmetric-
key encryption to each message M originated from U1 and
constructs {{M}skD1}skC1 . Then C removes the outermost
layer using skC1 to get {M}skD1 , and finally D1 removes the
innermost layer using skD1 to recover message M .
Similarly, we can apply Onion Routing for another session

that uses path S2 → C → D2. We can assign C and D2

session keys skC2 and skD2 for this session, respectively.
Suppose that network coding is enabled. We now show

how Onion Routing fails. First, D1 and D2 can overhear the
packets {{P1}skD1}skC1 and {{P2}skD2}skC2 from S1 and
S2, respectively, and both packets will be received by C as
well. Then, C will perform decryption on these two packets
and get {P1}skD1 and {P2}skD2 . By network coding, C would
broadcast {P1}skD1 ⊕{P2}skD2 . However, neither D1 nor D2

can decode the packets, as they only overhear the packets
encrypted with session keys skC1 and skC2 possessed by C,
respectively.
Finally, it is important to note that this simple example

provides an illustrative insight for larger topologies. Suppose
that an adversary can eavesdrop traffic that traverses node C.
When Onion Routing is used, the adversary can only tell the
previous hops (i.e., S1 and S2) and next hops (i.e., D1 and
D2) of node C, but cannot determine the nodes that are further
upstream or downstream. Such a privacy guarantee cannot be
directly achieved with simple end-to-end encryption.

B. Design Rationale of ANOC

Cooperative networking is a relatively new design policy
which encourages multiple nodes to cooperate to finish a
common communication goal, and is successfully applied to
wireless ad hoc networks [21], [22] and content distribution
networks [23]. We observe that the idea of cooperative net-
working can also be used here to resolve the conflicts between
Onion Routing and network coding. Taking the cross topology
for example again, the following two-step cooperation (as

ZHANG et al.: ANOC: ANONYMOUS NETWORK-CODING-BASED COMMUNICATION WITH EFFICIENT COOPERATION 1741

illustrated in Fig. 3) can help Onion Routing adapt to network
coding.
(1) session-key sharing: C shares its session key skC1 and
skC2 with D2 and D1, respectively;
(2) auxiliary decrypting: D2 decrypts the overheard packet
((P1)) using skC1 to obtain (P1), and D1 decrypts the
overheard packet [[P2]] using skC2 to obtain [P2].
After the above cooperation, C can broadcast the coded

packet (P1) ⊕ [P2]. Then, D1 can decode this packet to get
(P1), and decrypt (P1) to get P1; similarly, D2 can obtain P2.
In this way, the conflict between network coding and Onion
Routing is resolved.
Now, we consider two different approaches to achieve

session-key sharing between the coding node (C in the ex-
ample) and the decoding nodes (D1 and D2 in the example).
The first but naive approach is to simply let each router share
its private key with all its one-hop neighbors (e.g., C shares
rkC with D1 and D2), so that when an anonymous session
passing through the router is established, each of its neighbors
can also obtain the session key. This approach can be carried
out during the establishment phase of an anonymous session,
and hence will not incur any online overhead. However, the
sharing of private keys would severely undermine the security
of system.
For the second approach which we are going to adopt,

the coding node shares its session keys (instead of private
keys) with its one-hop neighbors in an on-demand fashion.
Specifically, when there are coding opportunities, the router
that performs coding should securely broadcast its session
keys of the corresponding sessions to its neighbors. One
critical point is that the share of session keys is only limited
to neighboring nodes. Nodes that are further upstream or
downstream cannot see the session keys; otherwise the user
privacy cannot be properly preserved. Another critical point
is that the key sharing procedure is only triggered when there
are opportunities for network coding, so that session keys will
not be shared unnecessarily.

IV. ANOC: THE DETAILS

We propose ANOC, the anonymous network-coding-based
communication for wireless mesh networks. ANOC is built
upon the traditional Onion Routing protocol, and introduces
efficient cooperation (i.e., session-key sharing and auxiliary
decrypting) among relay nodes to resolve the conflict between
Onion Routing and network coding. The technical challenges
include: (i) how to trigger the session-key sharing in an on-
demand fashion, and (ii) how to efficiently and securely share
session keys with neighbors without leaking any information
to adversaries. In the following, we show how ANOC ad-
dresses these two challenges.

A. System Setup

First, each of the routers (including proxy routers and
relay routers as shown in Fig. 2) is assigned a unique router
identifier and preloaded with a pair of public/private keys.
In particular, each proxy router knows about the network
topology and the public keys of all other routers in the
network; each relay router only knows about its neighboring

routers and their public keys. Also, each router maintains a
sufficiently large buffer for bathing and reordering packets,
such that the time-correlation of its incoming and outgoing
packets can be eliminated (see [9] for details).
In the bootstrap stage of ANOC, each router performs

operations offline to establish the secure broadcast key and
local neighboring table. These operations are explained below.
1) Secure Broadcast Key: Each router R randomly selects

its broadcast key, which will be later used for link-layer
encryptions of (i) packet headers and (ii) distribution of
session-keys. For each of the neighboring routers, R encrypts
its broadcast key using the public key of the neighbor and
unicasts the ciphertext to that neighboring router.
2) Local Neighboring Table: Each router R maintains a

local neighboring table that records the neighbors of each of
R’s neighbors. The table will be used to determine whether
there are coding opportunities (details will be presented in
Section IV-D). For instance, for node C in Fig. 1(c), its local
neighboring table will specify that node S1 has neighbors S2

and S4. The table can be easily constructed by having each
router broadcast the list of its one-hop neighbors.

B. Packet Format

ANOC assumes that wireless network coding (i.e., COPE
[2]) is enabled, and the packet header of COPE is placed
right after the MAC header. In addition, we add a new routing
header to enable anonymous routing. Fig. 4(a) illustrates the
layout of the COPE header and the routing header in our pro-
tocol. The routing header consists of two fields: COMMAND
and CIR ID. The COMMAND field describes the type of a
packet. In ANOC, there are four types of packets:

• CONNECT (Section IV-C): for route establishment,
• DISTRIBUTE (Section IV-D): for session-key distribu-
tion,

• DATA (Section IV-E): for information delivery, and
• DESTROY (Section IV-F): for tearing down an existing
session.

The CIR ID field carries the circuit identifier which enables
multiple sessions to be multiplexed into a single physical
channel. We explain its use in Section IV-C.
Figs. 4(b)-(d) illustrate the four types of packets (i.e., CON-

NECT, DISTRIBUTE, DATA, and DESTROY), each of which
is attached with different payload fields that are encrypted with
different types of keys. We will explain each type of packets
and how each is encrypted in the following subsections. In
particular, we encrypt the COPE header and the routing header
with the broadcast keys that have been established during the
bootstrap phase (see Section IV-A). Therefore, the sensitive
information such as the packet type will not be disclosed to
external adversaries. Furthermore, we fix each packet to have
the same size using padding so as to prevent an adversary
from inferring a session through size correlation [9].

C. Session Setup

To setup a new session, the proxy router first selects the
path of routers in the network toward the destination. It then
generates a CONNECT packet, which specifies the selected

1742 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 9, OCTOBER 2012

ENCODING_NUM
PACKET_ID NEXT_HOP

PACKET_ID NEXT_HOP

MAC Header

COPE Header
Routing Header

Payload

COMMAND CIR_ID

ROUTER_NUM
SESSION_KEY NEXT_HOP

SESSION_KEY NEXT_HOP

PADDING

PACKET_SEQ
IP_HEADER

IP_PAYLOAD / PADDING

KEY_NUM
ROUTER_ID SESSION_KEY
CIR_ID_IN CIR_ID_OUT

PADDING

ROUTER_ID SESSION_KEY
CIR_ID_IN CIR_ID_OUT

Fig. 4. The header and payload format of ANOC.

routers and the corresponding session keys for each of the
routers. Each router and its corresponding session key will
be encrypted with the public key of the router, such that
the CONNECT packet forms an onion structure (refer to
Section III-A).
In addition, when initiating a session, the proxy router

randomly chooses a locally unique number (i.e., circuit iden-
tifier) to identify the session. This number is placed in the
CIR ID field of the CONNECT packet. When a downstream
router receives the CONNECT packet, it will record the circuit
identifier in the CIR ID field, and choose a new circuit
identifier and replace the CIR ID field with it. In this way,
each router maintains a circuit-identifier mapping for the
session. This mapping will later enable DATA packets to be
routed along the path specified in the CONNECT packet.

D. Session-Key Sharing: The First Step of Cooperation

In ANOC, session keys are shared in an on-demand manner
based on coding opportunities. To discover a coding oppor-
tunities, we adopt the flow-based1 coding conditions given
in [24]. Using these conditions, we can determine whether
packets from n ≥ 2 flows can be coded together. For more
details, please refer to our technical report [16].
After discovering the coding opportunities, the router can

start sharing its session keys. Suppose that there are n coding
flows F1, . . . , Fn intersecting at router C, then C should
distribute its session keys associated with F1, . . . , Fn to all
its one-hop neighbors. This is achieved by broadcasting a
DISTRIBUTE packet encrypted with C’s broadcast key, which
is established in the system setup stage (refer to Section IV-A).
In addition to the session keys, the DISTRIBUTE packet
also contains the incoming and outgoing circuit identifiers,
in order that all neighbors of the coding node can properly
process overheard packets (see Section IV-E). As shown
in Fig. 4(c), a DISTRIBUTE packet contains the tuples
(Router ID, Session Key, CIR ID IN, CIR ID OUT), where

1Here, a flow is equivalent to a session.

Router ID is the identifier of the upstream router of C in this
route, Session key is the session key for C in this route, and
CIR ID IN and CIR ID OUT are the incoming and outgoing
circuit identifier for the session, respectively. For instance, let
us consider the coding scenario in Fig. 3. Let the mapping of
circuit identifiers in node C be 001 ⇀ 255 and 102 ⇀ 123
for sessions S1 → C → D1 and S2 → C → D2, respectively,
and let C hold the session keys skC1 and skC2 for these two
sessions, respectively. Then the two tuples contained in the
DISTRIBUTE packet would be (S1, skC1, 001, 255) and (S2,
skC2, 102, 123).

E. Auxiliary Decrypting: The Second Step of Cooperation

In ANOC, we implement auxiliary decrypting (see Sec-
tion III-B) via a separate module named overhearing mod-
ule.This module consists of a key table, an overheard packet
pool, and a decrypting unit. The key table stores the tu-
ples (Router ID, Session Key, CIR ID IN, CIR ID OUT)
of all DISTRIBUTE packets received from neighbors (see
Section IV-D). When a router sends a packet, or overhears
a packet that is destined to a different MAC address rather
than itself, it will find the router identifier of the sender (by
mapping to the source MAC address) and the circuit identifier
contained in the packet header. It then looks up in the key table
for the tuple that has the mapping indexed by (Router ID,
CIR ID IN). If no tuple is found, then the overheard packet
will be discarded; otherwise, if the tuple is found, then the
router will decrypt the overheard packet using the session key
in the tuple, and replace the CIR ID field of the overheard
packet with CIR ID OUT in the tuple. The resulting packet
will be stored in the overheard packet pool. When later the
router receives a coded packet, it will look up in the overheard
packet pool for packets that are necessary for decoding.

F. Session Teardown

When an initiator needs to tear down one of its sessions, it
will send a DESTROY packet along the route. Upon receiving
the DESTROY packet, each router en route deletes all the
information for the session. The neighboring routers will also
expire the session keys for the session (received through
DISTRIBUTE packets) after a pre-specified timeout period.

V. PRIVACY ENHANCEMENT ON ANOC

In this section, we analytically show how ANOC enhances
privacy over a wireless mesh network that enables network
coding. We consider the external adversary and the internal
adversary in our adversary model defined in Section II-C.

A. The External Adversary

We argue that ANOC can achieve relationship anonymity
against the external adversary, which monitors packets via
overhearing the wireless channel and attempts to perform
traffic analysis via correlations of content, size, and time. We
give our justifications as follows.
(a) Content-correlation. In ANOC, any CONNECT, DATA
or DESTROY packet will undergo encryption or decryption
when passing through each router. Thus, correlation based on

ZHANG et al.: ANOC: ANONYMOUS NETWORK-CODING-BASED COMMUNICATION WITH EFFICIENT COOPERATION 1743

Fig. 5. Three topologies used in our experiments.

content will be impossible. As for DISTRIBUTE packets, they
are encrypted (using the secure broadcast key) and broadcasted
without revealing the receiver identities or routing information.
(b) Size-correlation. In ANOC, each packet is padded into
the same size. Thus, it is impossible to perform traceback by
correlating packet sizes.
(c) Time-correlation. With batching and reordering operations
performed at each router, a packet cannot be associated with
others by examining the sending and receiving time.

B. The Internal Adversary

In Onion Routing, the whole path of a specific route is
known by the involved proxy routers, while the relay routers
along the route can only identify their previous and next hops.
This means that if one relay router is compromised, then it
cannot expose the sender-receiver relationship of the whole
route. Clearly, this argument holds in ANOC as well when
there are no coding opportunities (as in Onion Routing). On
the other hand, when a coding node distributes its session keys
using secure broadcast, its one-hop neighbors will inevitably
obtain more information. This can allow the internal adversary
to discover more hops in addition to its previous and next hops
for a given anonymous session.
In our technical report [16], we show how the internal

adversary can leverage the session-key sharing in our ANOC
protocol to discover more hops in a session. We also give
analytical results to demonstrate the number of additional
hops discovered by the internal adversary is rather limited.
Specifically, we show that the expected number of additional
upstream nodes that can be identified by an internal adversary
A is q(1− qd)/(1− q), where q is the probability that a given
node is a neighbor of A, and it has a coding opportunity. For
detailed discussion, please refer to [16].

VI. EXPERIMENTAL RESULTS

We now evaluate ANOC using realistic wireless settings.
Our evaluation is based on nsclick [18], which embeds Click
Modular Router [25] into the ns2 simulator [26].
We design two Click modules to reflect our system model:

the proxy router module, which defines a proxy router for
initiating new sessions and selecting routes, and the relay

router module, which defines a relay router for forwarding
data packets and performing network coding.
For comparisons with ANOC, we also implement the fol-

lowing two routing protocols:

• COPE, the routing protocol with network coding but no
anonymity protection,

• Onion, the Onion Routing protocol with anonymity pro-
tection but no network coding.

Our experiments focus on the following four metrics:

• throughput, the aggregate throughput of all sessions in
the network,

• coding rate, the ratio of the number of encoded packets
to the total number of forwarded packets,

• fairness, the measure of how peer flows get equal
throughput based on Jain’s fairness index [27]
(
∑

xi)
2/(N

∑
x2
i) (where xi denotes the throughput of

the ith flow and N is the number of all flows), and
• symmetric-key encryption/decryption, the computational
cost of packet processing when anonymity protection is
used.

We carry out experiments using three representative topolo-
gies given in Fig. 5: (a) the cross topology, which is relatively
simple and serves as the baseline setting, (b) the grid topology,
representing a relatively complex but regular setting, and
(c) the random topology, a more realistic setting to test the
applicability of our scheme.
In the following, we will consider the throughput, coding

opportunity, and fairness for each of the topologies with
all three routing protocols. Actually we also measure the
encryption/decryption performance specifically for Onion and
ANOC, and we put the results in our technical report [16],
due to limited space.
Experiment 1. Cross Topology: We first revisit the simple
cross topology (see Fig. 5(a)), in which we create four
sessions: 0 → 1, 1 → 0, 2 → 3, and 3 → 2, all of which
are relayed by router 4. We assume that these four flows
have the same offered load. Fig. 6 shows the performance
of different routing protocols. From Fig. 6(a), we observe
that when the offered load increases, the aggregate throughput
achieved by ANOC also increases and is fairly close to that
of COPE, while the throughput of Onion drops. The reason is
that when the offered load increases, there is a higher coding

1744 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 9, OCTOBER 2012

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
K

bp
s)

Offered load (Kbps)

ANOC
COPE
Onion

(a) Throughput

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 50 100 150 200 250

C
od

in
g

ra
te

Offered load (Kbps)

ANOC
COPE
Onion

(b) Coding rate

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 50 100 150 200 250

F
ai

rn
es

s
in

de
x

Offered load (Kbps)

ANOC
COPE
Onion

(c) Fairness

Fig. 6. Experiment 1: Throughput, coding rate, and fairness of three protocols in the cross topology.

 110
 120
 130
 140
 150
 160
 170
 180
 190
 200

 0 50 100 150 200 250

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
K

bp
s)

Offered load (Kbps)

ANOC
COPE
Onion

(a) Throughput

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250

C
od

in
g

ra
te

Offered load (Kbps)

ANOC
COPE
Onion

(b) Coding rate

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 0 50 100 150 200 250

F
ai

rn
es

s
in

de
x

Offered load (Kbps)

ANOC
COPE
Onion

(c) Fairness

Fig. 7. Experiment 2: Throughput, coding rate, and fairness of three protocols for the grid topology.

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
K

bp
s)

Offered load (Kbps)

ANOC
COPE
Onion

(a) Throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250

C
od

in
g

ra
te

Offered load (Kbps)

ANOC
COPE
Onion

(b) Coding rate

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

F
ai

rn
es

s
in

de
x

Offered load (Kbps)

ANOC
COPE
Onion

(c) Fairness

Fig. 8. Experiment 3: Throughput, coding rate, and fairness of three protocols for the random topology.

opportunity for ANOC and COPE, as confirmed by Fig. 6(b),
while ANOC suffers many packet collisions under the high
offered traffic load. Also, Fig. 6(c) shows that both ANOC
and COPE achieve a high fairness index.
Experiment 2. Grid Topology: We proceed to study the
complex but regular grid topology given by Fig. 5(b), in
which there are four sessions: 5 → 9, 15 → 19, 1 → 21,
and 3 → 23. We deploy the 25 nodes in a way that the
radio transmission range of each node covers all neighboring
nodes along its surrounding square (i.e., a node can have at
most eight neighboring nodes). This topology differs from the
previous cross topology in that each routing path consists of
more than two hops. Fig. 7 shows the obtained results. Similar
to Experiment 1, ANOC and COPE have similar performance
and they both outperform Onion when the offered load is high.
Experiment 3. Random Topology: We then consider a 15-
node random topology where nodes are randomly placed over
a plane, as shown in Fig. 5(c). We pick five sessions for
our evaluation: 0 → 10, 10 → 0, 1 → 6, 4 → 2, and
6 → 11. Fig. 8 shows the results we get, which are mostly
consistent with the results in previous experiments. The only
difference we want to highlight is that the fairness indices for

ANOC and COPE decrease when the offered load increases.
The primary reason is due to the asymmetric property of this
random topology, such that the sessions 0 → 10, 10 → 0,
1 → 6, and 4 → 2 receive a higher coding opportunity when
the offered load increases, while the session 6 → 11 does not.
However, this decrease in fairness is independent of the use
of anonymous routing.

VII. CONCLUSIONS

In this paper, we point out an important problem that when
a wireless network enables network coding, previously func-
tioning privacy-preserving schemes may no longer perform
correctly. To this end, we propose ANOC, a novel anonymous
communication protocol which can function seamlessly with
wireless network coding. Analytical and experimental results
imply that our ANOC not only keeps the advantage of network
coding in the effective use of wireless network capacity, but
also provides privacy for wireless users at the same time.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

ZHANG et al.: ANOC: ANONYMOUS NETWORK-CODING-BASED COMMUNICATION WITH EFFICIENT COOPERATION 1745

[2] S. Katti, H. Rahul, D. Katabi, W. Hu, M. Médard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” IEEE/ACM Trans.
Netw., vol. 16, no. 3, pp. 497–510, Jun. 2008.

[3] I. F. Akyildiz and X. Wang, “Wireless mesh networks: a survey,”
Computer Networks, vol. 47, no. 4, pp. 445–487, 2005.

[4] J. Le, J. C. S. Lui, and D. M. Chiu, “How many packets can we
encode: An analysis of practical wireless network coding,” in Proc.
IEEE INFOCOM’08, Apr. 2008.

[5] A. Back, U. Möller, and A. Stiglic, “Traffic analysis attacks and trade-
offs in anonymity providing systems,” in Proc. International Workshop
on Information Hiding, Apr. 2001.

[6] D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–90,
Feb. 1981.

[7] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of
a Type III anonymous remailer protocol,” in Proc. IEEE Symposium on
Security and Privacy, May 2003.

[8] M. Rennhard and B. Plattner, “Introducing MorphMix: Peer-to-Peer
based anonymous internet usage with collusion detection,” in Proc. ACM
Workshop on Privacy in the Electronic Society, 2002.

[9] M. G. Reed, P. F. Syverson, and D. M. Goldschlag, “Anonymous
connections and onion routing,” IEEE J. Sel. Areas Commun., vol. 16,
no. 4, pp. 482–494, May 1998.

[10] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proc. 13th USENIX Security Symposium,
2004.

[11] S. Katti, J. Cohen, and D. Katabi, “Information slicing: Anonymity using
unreliable overlays,” in Proc. NSDI, 2007.

[12] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transac-
tions,” ACM Trans. Information and System Security, vol. 1, no. 1, pp.
66–92, Nov. 1998.

[13] J. Kong and X. Hong, “ANODR: Anonymous on demand routing with
untraceable routes for mobile ad-hoc networks,” in Proc. ACM MobiHoc,
Jun. 2003.

[14] M. Blaze, J. Ioannidis, A. D. Keromytis, T. Malkin, and A. Rubin,
“Anonymity in wireless broadcast networks,” International Journal of
Network Security, vol. 8, no. 1, pp. 37–51, Jan. 2009.

[15] X. Wu and N. Li, “Achieving privacy in mesh networks,” in Proc. ACM
Workshop on Security of Ad Hoc and Sensor Networks, Oct. 2006.

[16] P. Zhang, Y. Jiang, C. Lin, P. P. C. Lee, and J. C. S. Lui, “Anoc: Anony-
mous network-coding-based communication with efficient cooperation,”
Tech. Rep., http://qos.cs.tsinghua.edu.cn/ pzhang/jsac-tr.pdf.

[17] A. Pfitzmann and M. Hansen, “Anonymity, unlinkability, un-
detectability, unobservability, pseudonymity, and identity manage-
ment – a consolidated proposal for terminology,” http://dud.inf.tu-
dresden.de/Anon Terminology.shtml, Feb. 2008, v0.31.

[18] M. Neufeld, G. Schelle, and D. Grunwald, “Nsclick user manual,”
University of Colorado, Boulder, CO 80309, Tech. Rep., Aug. 2003.

[19] Y. Yang, M. Shao, S. Zhu, B. Urgaonkar, and G. Cao, “Towards
event source unobservability with minimum network traffic in sensor
networks,” in Proc. ACM WiSec, Mar. 2008.

[20] M. Shao, Y. Yang, S. Zhu, and G. Cao, “Towards statistically strong
source anonymity for sensor networks,” in Proc. IEEE INFOCOM, Apr.
2008.

[21] A. Sendonaris, E. Erkip, and R. Aazhang, “User cooperation diversity.
Part I. System description,” IEEE Trans. Commun., vol. 51, no. 11, pp.
1927–1938, 2003.

[22] , “User cooperation diversity. Part II. Implementation aspects and
performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939–
1948, 2003.

[23] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,
“Distributing streaming media content using cooperative networkin,” in
Proc. 12th international workshop on Network and operating systems
support for digital audio and video, 2002.

[24] J. Le, J. C. S. Lui, and D. M. Chiu, “DCAR: Distributed coding-aware
routing for wireless networks,” IEEE Trans. Mobile Computing, vol. 9,
no. 4, Apr. 2010.

[25] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Computer Systems, Aug. 2000.

[26] “The network simulator - ns-2,” http://www.isi.edu/nsnam/ns/.
[27] R. Jain, The Art of Computer Systems Performance Analysis. Wiley-

Interscience, 1991.

Peng Zhang received the B.Eng. degree in Com-
puter Science from Beijing University of Posts and
Telecommunications in 2008. He is now a Ph.D.
student in the Department of Computer Science and
Technology at Tsinghua University. He was a visit-
ing student in the Department of Computer Sicence
and Engineering at the Chinese University of Hong
Kong between 2009 and 2010. His research interests
include network coding and network security.

Chuang Lin received the Ph.D. degree in Computer
Science from Tsinghua University in 1994. He is
now a professor of the Department of Computer Sci-
ence and Technology, Tsinghua University, China.
He is a Honorary Visiting Professor, University of
Bradford, UK. His current research interests in-
clude computer networks, performance evaluation,
network security analysis, and Petri net theory and
its applications. He has published more than 300
papers in research journals and IEEE conferences,
and four monographs in these areas.

Yixin Jiang received the Ph.D. degree in Computer
Science from Tsinghua University in 2006. He is
now an associate professor at Tsinghua University.
In 2005, he was a Visiting Scholar with the De-
partment of Computer Science, Hong Kong Baptist
University. From 2007 to 2009, he was a Post
Doctorial Fellow with University of Waterloo. His
research interests include wireless network security,
trusted computing and network coding.

Patrick P.C. Lee received the B.Eng. degree (first-
class honors) in Information Engineering from the
Chinese University of Hong Kong in 2001, the
M.Phil. degree in Computer Science and Engineer-
ing from the Chinese University of Hong Kong in
2003, and the Ph.D. degree in Computer Science
from Columbia University in 2008. He is now an
assistant professor of the Department of Computer
Science and Engineering at the Chinese University
of Hong Kong. His research interests are in network
robustness and security.

John C.S. Lui received his Ph.D. in Computer
Science from UCLA. He is currently a professor of
the CS&E Department at The Chinese University of
Hong Kong. His current research interests are in data
networks, system and applied security, multimedia
systems, network sciences and cloud computing. He
is an associate editor in the Performance Evalua-
tion Journal, IEEE-TC, IEEE-TPDS and IEEE/ACM
Transactions on Networking. John is a Fellow in
ACM and IEEE, and president of ACM SIGMET-
RICS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

