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Abstract—Software defined networks (SDNs) reshape the os-
sified network architectures, by introducing centralized and
programmable network control. Despite the huge benefits, SDNs
also open doors to what we call rule modification attack, an
attack largely overlooked by the community. In such an attack,
the adversary can modify rules by exploiting implementation
vulnerabilities of switch OSes and control channels. As a result,
packets may deviate from their original paths, thereby violating
network policies. To defend against rule modification attack,
this paper introduces a new security primitive named rule
enforcement verification (REV). REV allows a controller to check
whether switches have enforced the rules installed by it, using
message authentication code (MAC). Since using standard MACs
will incur heavy switch-to-controller traffic, this paper proposes
a new compressive MAC, which allows switches to compress
MACs before reporting to the controller. Experiments show that
REV based on compressive MAC can achieve a 97% reduction
in switch-to-controller traffic, and a 8× increase in verification
throughput.

Index Terms—Software defined networks, Rule modification
attack, verification, Compressive MAC

I. INTRODUCTION

Software defined networks (SDNs) promise a centralized,
flexible, and programmable control of computer networks. In
a typical SDN, a logically-centralized controller compiles net-
work policies (e.g., routing, access control, waypoint traversal)
into forwarding rules, and installs them at switches through
a standard control channel (e.g., OpenFlow [1]). Switches
enforce these forwarding rules to realize the network policies.

Even SDNs offer many benefits that are absent in tradi-
tional networks, they also raise new security issues. First, the
operating systems (OSes) of SDN switches are vulnerable to
attacks [2]–[4]. For example, a recent study shows that an
attacker can compromise the boot loader of switch OSes, so
as to persistently control SDN switches [2]. Secondly, the
control channels between the controller and switches also lack
security protection. Even the OpenFlow standard recommends
the usage of SSL/TLS, most SDN switch vendors just forgo
this feature [5].

The above security vulnerabilities open doors to what we
call rule modification attack, a threat vector that is largely
overlooked by the SDN community. In rule modification
attack, the adversary can either compromise the switch OS,
or act as a man-in-the-middle on the control channel, in
order to tamper with rules installed by the controller. As a
result, packets may deviate from their original paths, violating
original network policies. For example, a rule may require a

specific flow go through a firewall, and if the attacker can
delete this rule, all packets belonging to this flow will bypass
the firewall.

Rule modification attack is hard to detect due to the open-
looped control model of SDN: controllers only install rules at
switches, but cannot verify whether these rules are enforced by
switches. Even there are many verification tools for SDN, most
of them aim to check the correctness of network policies at the
controller side [6]–[8], or assume switches are trustable [9]–
[11]. As a result, they cannot work under the adversarial setting
where switches can be compromised.

To this end, this paper motivates Rule Enforcement Ver-
ification (REV), a new security primitive for SDNs. At a
high level, an REV mechanism should allow a controller to
securely verify whether rules installed by it have been correctly
enforced by switches, thereby dismissing the rule modification
attack.

This paper realizes REV based on message authentication
code (MAC). In a nutshell, when a packet enters the network,
the entry switch reports the packet to the controller, and
attaches a tag to the packet. Each downstream switch updates
the tag with the secret key shared with the controller. When the
tagged packet is about to leave the network, it is reported to
the controller by the exit switch. Finally, the controller verifies
the packet against its tag, in order to determine whether the
packet has traversed the intended path according to the rules.

Using standard MACs, both the entry and exit switch need
to report each packet and its tag to the controller, which
will result in a large volume of switch-to-controller traffic. To
handle this challenge, this paper proposes Compressive MAC, a
novel MAC that allows edges switches to compress tags before
reporting to the controller. Specifically, both the entry and
exit switch combine packets (with tags) belonging to the same
flow into a single flow-packet, and they only report this flow-
packet to the controller when the flow ends. Once the flow-
packet passes the verification, it holds with high probability
that each packet of the flow has traversed the intended path,
or equivalently, enforced the rules. This paper proves that
the compressive MAC is secure under standard cryptographic
models.

In sum, our contribution is three-fold:

• We motivate rule enforcement verification (REV), which
can be used to defend against the rule modification attack
in SDN. To the best of the author’s knowledge, this is



the first study on rule verification problem of SDN under
adversarial settings.

• We introduce a new message authentication code, named
compressive MAC, and theoretically prove its security
under standard cryptographic models.

• We realize REV based on the compressive MAC, and
show that it can achieve a 97% reduction in switch-to-
controller traffic, and an 8× improvement in verification
throughput, compared with using standard MACs.

The rest of this paper proceeds as follows. Section II states
the problem of REV. Section III introduces the REV realiza-
tion. Section IV analyzes the security of the REV realization,
and Section VI evaluates its performance. Section VII surveys
related work, and Section VIII concludes.

II. PROBLEM STATEMENT

A. Network Model

This paper considers a typical SDN consisting of one
controller and multiple switches. The switches and their links
collectively form the SDN datapath. Network operators spec-
ify high-level policies such as “Host A should talk to Host
B” with the API provided by the controller. The controller
complies operators’ policies into rules. A rule consists of
two parts: matching fields and actions, saying that packets
whose headers match the matching fields should take the
corresponding actions. The controller populates the complied
rules into flow tables of switches, through a standard control
channel like OpenFlow. Switches forward packets by looking
up in the flow table. Define a flow as the set of packets with
the same headers, e.g., all packets belonging to the same TCP
session.

B. Threat Model

This paper assumes the adversary can launch rule modi-
fication attack, as illustrated in Fig. 1. There are two ways
for such an attack. First, the adversary can exploit software
vulnerabilities of the switch OS, and install backdoor ap-
plications on the switch OS. Then, it can install, delete, or
modify rules in the hardware flow tables. As the second way,
since the connections between the controller and switches may
traverse multiple hops, the adversary can reside at intermediate
switches as a man-in-the-middle. Then, it can inject, drop, or
modify rule installation messages (e.g., flow-mod messages
as in OpenFlow) sent by the controller. By launching rule
modification attack, the adversary aims at the following two
goals:

Path Deviation. Packets take different paths than what are
expected by the controller. To be more specific, path deviation
can take the following three forms:

• Switch Bypass. One or more switches are skipped.
• Path Detour. The path deviates from one switch Si to

another switch other than the intended next-hop Si+1, and
comes back to Si+1 later.

• Out-of-order Traversal. Switches are not traversed in
the order that they should appear on the forwarding path.

Controller

SDN Switch

ASIC

Switch OS

Datapath

port 3

match action
xxx port 1
yyy port 2

flow table

Modify rules

Adversary

Fig. 1. An illustration of rule modification attack in SDN.

Unauthorized Access. Packets violate the access control
policies and reach destinations that they are not authorized
to. This attack can break isolation policies, e.g., only users
from CS department can access a web server.

This paper assumes that the controller is always trusted,
while the switches can be compromised by the adversary. In
addition, multiple compromised switches can collude to evade
the verification. It is also assumed that the adversary knows
the verification methods being used, and can record packets
and replay them into the network.

C. Rule Enforcement Verification

Let f be a flow and p be a packet of f . When p is received
by the source switch S0, it matches a set of rules (forwarding
rules, ACL rules, etc.), which will collectively determine the
next hop, say S1. Then, p matches another set of rules at S1,
and be forwarded to S2. This process continues until p reaches
the destination switch Sn+1, which forwards p to the receiver.

Define R as the network rule set, i.e., the set of all rules at
all switches of the network. Let Path(R, f) be the forwarding
path of flow f , represented as S0 → S1 → . . . → Sn+1. Let
Rf (Si) be the set of rules matched by packets of f at switch
Si. Then, the set of all rules matched by flow f along its for-
warding path can be defined as: Rf = ∪Si∈Path(R,f)Rf (Si).
We give the definition of rule enforcement verification (REV)
as follows.

Definition 1: Packet-level REV with respect to the network
rule set R, and a packet p of flow f is defined as: verifying
whether p has traversed the path Path(R, f).

Definition 2: Flow-level REV with respect to the network
rule set R and flow f is defined as: verifying whether all
packets of flow f have traversed the path Path(R, f).

III. REV METHODS

This section presents two concrete methods to achieve REV,
one for packet-level REV, and one for flow-level REV.

A. Packet-Level REV

The packet-level REV method consists of three stages:
initialization, tagging, and verification.
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1) Initialization: The packet-level REV method is orga-
nized in sessions. Each session verifies the rule enforcement
with one packet, i.e., whether the packet has been forwarded
according to the corresponding rules. In the following, let us
consider one session, say v, and let f be the flow that the
packet belongs to.

Assume the controller has a public/private key pair
(pK, rK). The controller shares a symmetric key Ki with
each switch Si in the network. This serves as a master key for
generating session keys. In prior to a new REV session, the
controller generates a session identifier as:

VID = H(Inport||Header||TimeStamp) (1)

Here, H is a cryptographic hash function; Inport is the input
port of f , e.g., a switchID/port pair; Header is the matching
rule of flow f , e.g., a wildcarded TCP five tuple; TimeStamp
is the current time at the controller. Note that Inport and
Header can be used to jointly specify the flow f . TimeStamp
is used to prevent packet replays, where an adversary records
and replays packets with out-of-date VIDs.

Then, the controller sends a message containing
VID, Inport, Header, TimeStamp, and a signature
σrK(VID||TimeStamp) to the source switch through a
secure channel. By secure, the channel should provide basic
confidentiality and integrity for messages. The secure channel
can be implemented with OpenFlow on top of SSL/TLS.

2) Tagging: When the source switch S0 receives a packet
p from port Inport and matching Header, it computes the
hash of p as PktHash = H(p), and sends a verification
report containing VID and PktHash to the controller. Then,
it sends p together with PktHash, VID, TimeStamp, and
σrK(VID||TimeStamp) to the next hop S1.

On receiving p, S1 checks the validity of VID and
TimeStamp against the signature, and derives its session key
as SK1 ← F (K1, VID), where F is a pseudorandom function.
Then, S1 generates a tag t as:

t←MACSK1(PktHash) (2)

Here, MACk(·) is the message authentication code with key k.
Then, S1 sends p together with t, PktHash, VID, TimeStamp,
and σrK(VID||TimeStamp) to the next-hop S2.

Each downstream switch Si (2 ≤ i ≤ n) conducts a similar
process with S1, and updates the tag t as:

t←MACSKi(PktHash||t) (3)

When the destination switch Sn+1 receives p, it sends p
to the receiver. At the same time, Sn+1 sends a verification
report containing VID, PktHash, and t to the controller. Note
that rather than store session keys, switches derive them from
VID on demand. This approach is inspired by [12].

3) Verification: On receiving a verification report from a
source switch, the controller saves it as a pending verification
request. When the controller receives a verification report
from a destination switch, with the same VID and PktHash,

the controller checks whether the tag t and PktHash in the
verification report satisfy the following equation:

t = MACSKn(PktHash||MACSKn−1(PktHash|| . . .
PktHash||MACSK1(PktHash) . . .))

(4)

If so, the verification passes; otherwise, the verification fails.

B. Flow-Level REV

Even the packet-level REV method can verify the rule
enforcement of a single packet, to verify a flow, one needs
to apply REV for each packet of the flow. This means
that both the source and destination switches should send a
verification report for each packet of the flow. When there
are multiple flows for verification simultaneously, The traffic
of verification reports can cause congestion on the switch-
to-controller channels, thereby preventing the controller from
responding to normal switch requests (e.g., packet-in messages
in OpenFlow).

This section introduces the flow-level REV method to
overcome the above problem. In the flow level REV, the
source/destination switch compresses packets of the same flow
into a single flow-packet, and sends the flow-packet to the
controller when the verification session ends. If the flow-
packet passes the verification, then the controller can conclude
that each packet of the flow has traversed the intended path.

The key challenge when realizing the flow-level REV is how
to compress packets into a flow-packet, such that verifying
a single flow-packet is equivalent to verifying all packets of
the flow. This paper addresses this challenge by introduc-
ing compressive MAC, a new message authentication code
that supports compression. To illustrate what a compressive
MAC is, suppose there is a flow consisting of m packets
p1, p2, . . . , pm, whose tags are t1, t2, . . . , tm, respectively.
Informally, a compressive MAC should satisfy the following
two conditions:

(1) Verify(pi, ti) = true, for ∀i ∈ [1,m]⇒
Verify(Compress({pi}mi=1), Compress({ti}mi=1)) = true

(2) Verify(pi, ti) = false, for ∃i ∈ [1,m]⇒(w.h.p)

Verify(Compress({pi}mi=1), Compress({ti}mi=1)) = false

Here, Verify is the verification function, and Compress is the
compression function. It is required that condition (1) should
be always satisfied, and condition (2) should be satisfied with
high probability (w.h.p.).

The construction of compressive MAC is inspired by ho-
momorphic MACs [13], which in turn are based on the
Cater-Wagman MAC [14]. Note that homomorphic MACs
are designed for defending network coding against pollution
attacks [15], while the compressive MAC has a quite different
goal. In addition, the construction of compressive MAC is also
quite different from those of homomorphic MACs.

Before introducing the compressive MAC, let us first define
what a packet is: we represent a packet p by its hash value
p = H(p). Here p is a vector of length l defined on a finite
field Fq , and p(i) refers to the ith element of p.
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The flow-level REV method consists of four stages: initial-
ization, tagging, compression, and verification. Similar to the
packet-level REV, let us consider a single verification session
v for a flow f .

1) Initialization: This stage is similar to that of the packet-
level REV method. First, the controller generates a session
identifier VID using Eq(1), and a compression key SKc as
SKc ← F (rk, VID). Then, the controller sends a message
containing VID, Inport, Header, TimeStamp, SKc, and
the signatures σrK(SKc), σrK(VID||TimeStamp) to both the
source and destination switches, through a secure channel as
in the packet-level REV. The source and destination switches
respectively create a flow-packet pf

S ∈ Fl
q and pD

F ∈ Fl+n
q ,

both of which are initialized to all zeros.
2) Tagging: Before sending the ith packet pi, the

source switch S0 calculates its hash PktHash, and attach-
es pi with VID, TimeStamp, PktHash, and the signature
σrK(VID||TimeStamp). When the first-hop switch S1 receives
pi, it extracts the VID and generates session keys SK1,a and
SK1,b using the master key K1 shared with the controller as:

SK1,a ← F (K1, VID||0), SK1,b ← F (K1, VID||1)

After that, S1 derives a vector α1 = G(SK1,a) ∈ Fl
q , where

G is a pseudorandom number generator (PRNG) with output
on Fl

q . Then, S1 calculates a tag ti,1 as:

a← pi ·α1 =

l∑
j=1

pi(j)α1(j) ∈ Fq

b← F (SK1,b, VID||S0||i) ∈ Fq

ti,1 ← a+ b ∈ Fq,

attaches ti,1 at the end of pi, i.e., pi ← pi||ti,1 ∈ Fl+1
q , and

sends pi to the next hop S2.
Similarly, S2 generates its session keys SK2,a and SK2,b,

derives the vector α2 = G(SK2,a) ∈ Fl+1
q , and calculates a

new tag ti,2 as:

ti,2 ← pi ·α2 + F (SK2,b, VID||S1||i) ∈ Fq (5)

Finally, S2 sends pi ← pi||ti,2 ∈ Fl+2
q to S3. This process

continues until Sn sends packet pi ∈ Fl+n
q to the destination

switch Sn+1.
Note that each tag encodes the identity of the last-hop

switch. This can prevent packet injection from out-of-path
switches. Also note that each tag depends on the index of
the packet, thus each switch should maintain a counter for the
flow f .

3) Compression: When the source switch sends the ith
packet pi (of length l), it derives βi ← F (SKc, i) ∈ Fq ,
and updates its flow-packet pf

S as:

pf
S(j)← pf

S(j) + βipi(j), for each j ∈ [1, l]

When the destination switch receives the packet pi (of length
l+n), it similarly derives βi ← F (SKc, i) ∈ Fq , and updates
its flow-packet pD

F as:

pf
D(j)← pf

D(j) + βipi(j), for each j ∈ [1, l + n]

Algorithm 1: Verify(VID, f,m,pf
S ,p

f
D)

Input: Ki: the private key of switch Si,
R: the network rule set,
VID: the verification session identifier,
f : the flow corresponding to VID,
m: the number of packets of flow f ,
pf
S : the source flow-packet,

pf
D: the destination flow-packet.

Output: True or False.
1 Compute the forwarding path of f :
Path(R, f) = (S0 → S1 → . . .→ Sn+1);

2 if pf
S ̸= truncate(pf

D, l) or len(pf
D) ̸= n+ l then

3 return False;
4 end
5 foreach i← 1 to n do
6 SKi,a ← F (Ki, VID||0); SKi,b = F (Ki, VID||1);
7 α← G(SKi,a);
8 a← α · truncate(pf

D, l + i− 1);
9 b←

∑m
j=1 F (Kc, j) · F (SKi,b, VID||Si−1||j);

10 if a+ b ̸= pf
D(l + i) then

11 return False;
12 end
13 end
14 return True;

When the verification session ends, the source switch sends
VID and pf

S to the controller, and the destination switch sends
VID and pf

D to the controller.
4) Verification: The verification process at the controller is

summarized in Algorithm 1. Here, the length of packet hash
is l; the number of switches on the path (excluding the source
and destination switches) is n; and the number of packets of
the flow is m.

IV. SECURITY ANALYSIS

This section analyzes the security of the flow-level REV
method. First, an informal theorem regarding the compressive
MAC is given as follows:

Theorem 1: Assume that F and G are secure pseudorandom
function and generator, respectively. Then, the probability
that a probabilistic polynomial-time adversary can forge a
tag of packet for a non-compromised switch, such that the
verification of Algorithm 1 passes, is negligibly larger than
1/q, where q is the size of finite field being used.

The above theorem directly follows from Theorem 2 in
Appendix. Based on this theorem, the following shows how the
flow-level REV method can defend against the attacks outlined
in Section II-B.
Switch Bypass. Suppose a packet p is received by a compro-
mised switch Si, which forwards p directly to switch Si+2,
thereby bypassing the original next hop Si+1. Since Si+1 is not
compromised, then according to Theorem 1, the probability
that an adversary can forge a tag for Si+1, such that the tag
passes the verification, is negligibly larger than 1/q. Thus,
switch bypass can be detected.
Path Detour. Similar to the above case, suppose a packet p
is received by a compromised switch Si, which forwards p
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along a path D1 → . . .→ Dm → Si+1. There are two cases.
(1) Dm is not compromised. In this case, p will arrive at Si+1

with at least one tag generated by D1 through Dm. Since the
tag generated by Si+1 will be based on all tags of p according
to Eq (5), it will be different from what would be generated if
p is directly received from Si. Even some downstream switch
removes the extra tags generated by D1 through Dm to make
the total number of tags equal to n, the tags generated by
Si+1 through Sn would still fail the verification with high
probability. (2) Dm is compromised. In this case, Dm can
remove all the tags generated by D1 through Dm−1, to give
the illusion that p is directly forwarded to Si+1. However, this
can still be detected by REV for the following reason. Recall
that a tag encodes the last-hop switch identifier, according to
Eq (5). Thus, if p is received from Dm instead of Si, then
the tag generated by Si+1 will be different and will not pass
the verification with high probability. Thus, path detour can
be detected.

Out-of-order Traversal. Suppose a packet p has traversed the
path S0 → . . . → Sn → Sn+1 in a different order. Then, the
number of tags carried by p when reaching Sn+1 will still be
n. However, these tags would be different from what would be
generated if the path is traversed in the right order. The reason
is that a tag is generated based on not only the hash of p, but
also on all tags of p. As a result, even for the same switch
and the same packet, the generated tag will be different if the
order that the switch appears is different. Thus, tags generated
under out-of-order traversal would fail the verification with
high probability, meaning that out-of-order traversal can be
detected.

Unauthorized Access. Suppose a packet p is not authorized
to reach an end host, according to some ACL rules. Let the
path of p be S0 → S1 → . . .→ Sm, where Sm is the switch
where p is dropped. To verify the enforcement of such kind of
ACL rules, it is required that any switch that drops a packet
should also send a verification report, as in the packet-level
REV. As for flow-level REV, the controller should send the
compression key to the dropping switch, which will send the
flow-packet of the dropped flow to the controller when the
verification session ends. In this sense, the dropping switch
takes the role of a destination switch. Here in this example,
Sm would report the hash and tag of p before dropping p. If
the verification passes for p, then we say that the ACL rules
are correctly enforced by p.

Packet Replay. Suppose a compromised switch records flows
of previous verification sessions, and replay them into the net-
work. The goal of the adversary is to let these replayed flows
pass the controller’s verification. In this case, the destination
switches would send verification reports to the controller for
these flows. However, since the controller has not received any
verification reports of these flows from any source switches,
it will just forgo the verification reports from the destination
switches without verification. Even the replayed packets can-
not pass the controller’s verification, the adversary may still
wish to drain a destination switch’s memory by replaying a

lot of flows (the destination switch should maintain a flow-
packet for each flow). In the proposed REV methods, each
packet carries a TimeStamp, and switches will not compute
tags or compress packets with out-of-date TimeStamp. This
can to some extent mitigate the above problem.

V. IMPLEMENTATION

REV header format. The REV header sits in-between the
IP and TCP/UDP header, consisting of VID, TimeStamp,
PktHash, which are all 16-bit long. In addition, there are a
variable number of t-Byte tags, each of which is computed by
a switch along the packet’s path. Note that the current pro-
totype does not include the signature σrK(VID||TimeStamp),
which is left for future implementation.

Cryptographic operations. We instantiate the pseudorandom
number generators G with AES-128 in counter mode, the
pseudorandom function F with AES-128 in CBC mode, and
the cryptographic hash function H with SHA1. Both AES and
SHA1 are implemented using OpenSSL [16]. Computation
over Galois field is performed using the fast Galois field
arithmetic library [17], and a multiplication table is pre-
computed for fast multiplications.

REV Server. The REV server is an application running atop
the Ryu controller [18]. It maintains a path table that records
all the end-to-end paths, indexed by entry port (source switch
ID and local port ID) and packet header (e.g., TCP 5-tuple).
The path table can be constructed using the method introduced
in [11]. The server exposes a REST API that allows users to
issue verification queries. A verification query specifies the
verification flow i.e., the flow to be verified, and the batch size,
i.e., how many packets should be compressed for verification.
For example, the following command will check the flow from
10.0.0.1 to 10.0.0.2, with a batch size of 1000:
curl -X PUT ’{"dst_ip":10.0.0.1, "src_ip":
10.0.0.2, "batch":1000}’ 127.0.0.1:8080
/rev/check_flow/

On receiving a verification query, the server looks up in
the path table to determine the path of the flow, and sets
up a verification session. By doing so, the server sends the
information of the verification flow and the batch size to the
first and last switch on the path. OpenFlow experimenter
message is used for communication among the server and
switches.

REV Datapath. The REV datapath is implemented based
on the CPqD OpenFlow software switch [19]. Two extra
components are added: (1) a REV agent which communicates
to the server with experimenter messages, in order to
set up symmetric keys with the server, initiate verification
sessions, and send compressed packets/tags; (2) a REV packet
processing module, which is responsible for inserting, re-
moving, parsing REV headers, and computing, compressing,
sending MACs. The source switch maintains a table of all
active verification sessions. If a packet belongs to a verification
session, the source switch inserts a REV header into the
packet. All downstream switches just inspect whether there
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is a REV header in order to determine whether to generate a
MAC for the packet. When the packet counter of a verification
flow reaches the batch size, or the session times out, both the
source and destination switches would send their respective
flow-packets to the REV server.

VI. EVALUATION

This section evaluates the flow-leve REV in terms of band-
width overhead, processing throughput, and processing delay.

A. Dataset and Setup

Dataset. The dataset is a sample trace of a backbone router,
collected in 2011 [20]. The trace has a volume of 28,475MB,
consisting of 935,365 flows and 37,571,701 packets. The
average packet size is 757 Bytes, and the average flow size is
40, i.e., each flow consists of 40 packets on average.
Setup. The evaluation uses a linear topology consisting of
one source switch, n core switches, and one destination
switch. We generate a flow of f packets, each of which has
p Bytes, and feed all these packets to the source switch.
Then, the destination switch outputs a compressed hash and
n compressed tags. Finally, we let the REV server verify
the compressed hash and tags, and record the time t. In the
experiments, we measure the bandwidth overhead, processing
throughput, and processing delay, by varying the parameters f ,
p, and n. When we refer to the trace data, we mean the specific
configuration of f = 40 and p = 757 Bytes. All experiments
on a Linux server with a 3.6GH Intel i7 processor and 32GB
memory.

B. Bandwidth Overhead

First consider the flow-level REV which uses the com-
pressive MAC. On the datapath, each packet carries VID,
PktHash, TimeStamp, each of which is 16-Byte long, a 1-
Byte hop count, and up to n tags, where n is the number
of hops. As each tag has t Bytes, the bandwidth overhead
per packet on the datapath is then nt + 49 Bytes. For the
control channel, the source switch should send VID and the
compressed hash to the controller, while the destination should
send VID, the compressed hash and n compressed tags. In sum,
the total bandwidth overhead per flow on the control channel
is 32 + (nt+ 32) = nt+ 64 Bytes.

For comparison, consider the packet-level REV which uses
standard MACs. In this case, only one tag is needed for each
packet, and the bandwidth overhead per packet on the datapath
is t+ 48 Bytes. For the control channel, both the source and
destination switch should send a verification report for each
packet of the flow. Then, the bandwidth overhead per flow is
(t+ 64)f Bytes.

Fig. 2(a) shows the bandwidth overhead for the trace data,
when there are 8 hops. We can see that the compressive
MAC reduces the bandwidth cost of the control channel by
around 97%, compared with standard MACs. The bandwidth
overhead of the compressive MAC is slightly higher than
that of standard MACs on the datapath. Fig. 2(b) shows
the relationship between bandwidth overhead and the number
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Fig. 2. Bandwidth overhead on the control channel and datapath, when using
standard and compressive MAC, respectively. The results are based on a
backbone router trace from CAIDA [20].

of hops. We can see that using the compressive MAC, the
bandwidth overhead for both the control channel and datapath
increases slowly with the number of hops.

C. Verification Throughput

This experiment evaluates the verification throughput, de-
fined as the total number of packets f divided by the verifi-
cation time t.

Fig. 3(a) reports the verification throughput for different
number of hops. It shows that the throughput drops when the
flow path consists of more hops. The reason is that each core
switch would append a tag to each packet, and the server needs
to verify each of the tags. The throughput is around 1Mpps
for the trace data when there are 8 hops.

Fig. 3(b) reports the relationship between verification
throughput and flow size. We can see that the throughput
is rather low (0.12Mpps) when there is only one packet in
the flow. This corresponds to the packet-level REV method,
where each packet needs to be verified individually. On the
other hand, the throughput increases to around 0.92Mpps when
there are 8 hops. This indicates that with compressive MAC,
the flow-level REV method can achieve a nearly 8× increase
in verification throughput.

D. Datapath Throughput

Since CPqD is just a software switch running in Linux user
space, it has a rather limited packet forwarding capability. For
this reason, CPqD is mainly used to test the functionality
of OpenFlow, rather than obtain performance benchmarks.
Here, we decide to extract the computation logics of REV
as a standalone program, and measure its throughput. We
distinguish among three different types of switches: source
switches, destination switches, and core switches.

Core switches. Fig. 3(c) reports the throughput of core switch-
es, when the flow consists of 16 hops (i.e., core switches).
Since the computation cost of a core switch depends on the
number of tags carried by a packet, the throughput decreases as
the switch identifier increases (switch are numbered according
to their appearance on the path). Note the throughput has no re-
lationship with either packet sizes or flow sizes, thus we do not
report them here. We can see that the processing throughput
is around 1Mpps when there are no more than 16 hops. This
translates into a data throughput of 757×8×106 = 6Gbps for
the trace data. Since the core switch processing is bottlenecked
by symmetric-key operations, we expect the throughput can be
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significantly improved by using AES-NI [21], an instruction
set for speeding up AES operations.

Edge switches. Fig. 3(d) and Fig. 3(e) report the throughput
of source and destination switch, respectively. We can see that
the throughput of the source switch is around 0.95Mpps for
the trace data (packet size = 757 Bytes). Since the source
switch needs to compute packet hashes, its throughput drops
when the packet size grows. On the other hand, the throughput
of the destination switch is much higher and does not change
with packet size, as it does not need to compute packet hashes.
In particular, the throughput is around 7.6Mpps for the trace
data, 8 times that of the source switch.

E. Processing Delay

Fig. 4 reports the delay of the REV server and the REV
datapath. We can see that the delay of the REV server is
impacted by flow size, and is rather small when the flow has
more than 10 packets: it takes around 3.2µs to verify a packet
when there are 16 hops. The delay for the datapath represents
the sum of processing time at all switches, which is also very
small and barely related to packet size and flow size. It takes
around 16µs when there are 16 hops. The results show that
the flow-level REV incurs minimal latency on the datapath.

VII. RELATED WORK

Verification of SDN data plane. Many dataplane verification
tools for SDNs have been proposed recently. Anteater [6],
HSA [7], and VeriFlow [8] verify the correctness of dataplane
configuration at the controller. However, even the dataplane
configuration is correct, switches may still experience faults.
ATPG [9] addresses this issue by actively testing the SDN
dataplane with probe packets. However, ATPG only checks
pairwise reachability, thereby cannot detect faults that do
not hurt reachability while changing the forwarding paths.
VeriDP [11], [22] addresses this issue by checking whether the
packet forwarding behaviors are complying with the dataplane
configuration at the controller. However, both ATPG and

VeriDP assume switches are trustable, and thus cannot be used
for rule enforcement verification.
Path verification. ICING [23] is a path verification mecha-
nism, where each router along the forwarding path computes
a MAC for each packet, such that the receiver can check
whether a packet has followed the path claimed by the
sender. One problem of ICING is that it requires heavy-weight
Diffie-Hellman key establishment, and has a high per-packet
overhead. OPT [12] achieves a similar goal as ICING, but has
a smaller overhead. Both ICING and OPT only support per-
packet tagging and verification. When applied to REV, both
of them require each packet and tag of a flow be sent to the
controller, which will incur a high bandwidth cost.
Message Authentication Codes. Aggregate MACs [24] are
designed for scenarios where one receiver shares different keys
with multiple senders. Using aggregate MACs, tags of multiple
senders for their respective packets can be aggregated into a
single tag, such that the receiver can verify the integrity of
all the packets with this tag. Comparatively, the compressive
MAC allows not only tags, but also packets, to be compressed.
Homomorphic MACs [13] allow switches to linearly combine
packets and compute tags for the combined packets, without
knowing the MAC key shared between the sender and receiver.
Compressive MAC shares the same spirit with homomorphic
MACs in that they both allow packets and tags to be com-
bined. However, homomorphic MACs can only guarantee the
received packets are linear combinations of source packets,
while compressive MAC ensures that the received packets have
traversed the intended paths without being modified.

VIII. CONCLUSION

This paper motivated rule enforcement verification (REV),
a new security primitive for software defined networks. In
packet-level REV, all switches tagged packets that they for-
warded, and exit switches reported the tags to the controller
for verification. To reduce the switch-to-controller traffic, this
paper proposed flow-level REV based on compressive MAC,
a new MAC that allowed tag compression. Emulation showed
that by using compressive MAC, the flow-level REV can
achieve a 97% reduction in switch-to-controller traffic, and
a 8× increase in verification throughput.
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APPENDIX

This appendix presents the definition of compressive MAC,
a building block of our flow-level REV method.

Definition 3: A (q, l) compressive MAC is defined
by three probabilistic polynomial time (PPT) algorithms
(MAC,Compress,Verify), where MAC generates a tag for a
vector of length l defined on the finite field Fq; Compress
combines multiple vectors and the corresponding tags into a
single vector and tag; Verify checks the validity of a vector
against its tag. The detailed specification is as follows:

• MAC. Input: a security key kM , an identifier id, and a
vector p ∈ Fl

q . Output: a tag t for p.

• Compress. Input: a security key kC , n id/vector pairs
{(idi,pi)}ni=1, and their tags {ti}ni=1, where idi are all
distinct. Output: a vector p = ⟨idi,pi, kC⟩ni=1 ∈ Fl

q , and
a tag t = ⟨idi, ti, kC⟩ni=1 ∈ Fq .

• Verify. Input: security key (kM , kC), a set of identifiers
{idi}ni=1, a vector p, and its tag t. Output: 0 (reject) or
1 (accept).

For correctness, we require the above algorithms satisfy:

Verify(kM , kC , {idi}ni=1, ⟨idi,pi, kC⟩ni=1,

⟨idi,MAC(kM , idi,pi), kC⟩ni=1) = 1

Then, we define the security of compressive MAC via the
following game:

Definition 4: Let Ψ=(MAC, Compress, Verify) be a (q, l)
compressive MAC. Consider a security game GAME0 played
between an adversary A and a challenger C:

• Setup. The challenger C generates a security key pair
(kM , kC) randomly.

• Query. The adversary A generates n id/vector pairs
{(idi,pi)}ni=1, where idi are all distinct, and sub-
mits them to C. Then, A adaptively submits queries
(id′i,p

′
i) to C, where id′i are all distinct. C returns

t′i = MAC(kM , id′i,p
′
i).

• Output. A generates n tuples {(id∗i ,p∗
i , t

∗
i )}ni=1.

The adversary A is said to win GAME0 if:

{idi}ni=1 = {id∗i }ni=1, ⟨idi,pi, kC⟩ni=1 = ⟨id∗i ,p∗
i , kC⟩ni=1,

Verify(kM , kC , {idi}ni=1, ⟨id∗i ,p∗
i , kC⟩ni=1, ⟨id∗i , t∗i , kC⟩ni=1) = 1,

and either of the following two conditions holds:
1) there exists a 1 ≤ i ≤ n, such that p∗

i ̸= pi (Type I)
2) there exists a 1 ≤ i ≤ n, such that A has never queried

(idi,pi) (Type II)
Define the advantage MAC-Adv(A,Ψ) as the probability that
A wins GAME0 with respect to Ψ. Then, we have the
following security definition for compressive MAC:

Definition 5: A (q, l) compressive MAC scheme Ψ is secure
if for all PPT adversary A, its advantage MAC-Adv(A,Ψ) is
negligible.

Note we require that the set of identifiers {idi}ni=1 at the
sender should be the same as the set of identifiers {id∗i }ni=1

outputted by A. We also require that the compressed packet
⟨idi,pi, kC⟩ni=1 should be the same as ⟨id∗i ,p∗

i , kC⟩ni=1 that
is outputted by A. These requirements can be ensured by
incrementing the identifiers sequentially, and letting both the
sender and receiver report the compressed packet to the
verifier.

Construction 1: Our construction of compressive MAC
Ψ uses a pseudorandom generator G and a pseudorandom
function F , and is defined as follows.

• MAC. Given the security key kM = (k1, k2), a vector
p ∈ Fl

q , and the identifier id, do the following: (1) α←
G(k1) ∈ Fl

q; (2) γ ← F (k2, id) ∈ Fq; (3) t← α·p+γ ∈
Fq; (4) Output t.

• Compress. Given KC = k3, n id/vector pairs
{(idi,pi)}ni=1, and tags {ti}ni=1, do the following: (1)
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βi ← F (k3, idi) ∈ Fq for each i; (2) p ←
∑n

i=1 βipi ∈
Fl
q; (3) t←

∑n
i=1 βiti ∈ Fq; (4) Output p and t.

• Verify. Given the security key (kM , kC) = (k1, k2, k3), a
vector p, its tag t, and a set of identifiers {idi}ni=1, do the
following: (1) α ← G(k1) ∈ Fl

q; (2) βi ← F (k3, idi) ∈
Fq; (3) γ ←

∑n
i=1 βi · F (k2, idi) ∈ Fq; (4) t′ ← α · p+

γ ∈ Fq; (5) Output 1 if t′ = t, or 0 otherwise.
The correctness of Ψ follows since:

t′ = α · p+ γ = α ·
n∑

i=1

βipi +
n∑

i=1

βiγi

=
n∑

i=1

βi(α · pi + γi) =
n∑

i=1

βiti = t

Theorem 2: Our construction of compressive MAC Ψ is
secure, assuming F and G are secure pseudorandom function
and generator, respectively. In specific, for all PPT adversary
A, there exists a PRF adversary B1 and a PRG adversary
B2 whose advantage in wining their respective game is
PRF-Adv(B1, F ) and PRG-Adv(B2, G), such that:

MAC-Adv(A,Ψ) ≤ PRF-Adv(B1, F )+PRG-Adv(B2, G)+
1

q

Proof: Define another two games GAME1 and GAME2
as follows. GAME1 is identical to GAME0, except that the
output of G is replaced by a truly random element of Fl

q .
That is, before responding to MAC queries, the challenger
randomly samples α

R←− Fl
q , which is then used in step (1) of

MAC. GAME2 is identical to GAME1, except that the output
of F is replaced by a truly random element of Fq . That is,
when responding to each MAC query, the challenger derives
γ

R←− Fq in step (2) of MAC.
Let W0, W1, W2 be the event that A wins GAME0,

GAME1, and GAME2, respectively. Then, we have:

Pr(W0) = MAC-Adv(A,Ψ) (6)

In addition, there exists a PRG adversary B2 such that:

Pr(W0)− Pr(W1) ≤ PRG-Adv(B2, G) (7)

, and a PRF adversary B1 such that:

Pr(W1)− Pr(W2) ≤ PRF-Adv(B1, F ) (8)

The following defines how the challenger C interacts with
the adversary A in GAME2:
Initialization. C generates a random vector α

R←− Fl
q . A

submits {(idi,pi)}ni=1 to C.
Query. A queries (id′i,p

′
i). For each i, C generates γ′

i
R←− Fq ,

and returns t′ = αp′
i + γ′

i.
Output. A outputs n id/vector/tag tuples {(idi,p∗

i , t
∗
i )}ni=1. C

performs the following steps: (1) for each idi, if idi = id′j for

some j, then γi = γ′
j , else γi

R←− Fq; (2) for each idi, generate

βi
R←− Fq; (3) check whether the following two equations

holds:
n∑

i=1

βipi =
n∑

i=1

βip
∗
i (9)

α

n∑
i=1

βip
∗
i +

n∑
i=1

βiγi =

n∑
i=1

βit
∗
i (10)

In the following, we are going to compute Pr(W2). Let
T be the event that Type I break happens, and let T̄ be the
complement event of T . First, we evaluate Pr(W2 ∧ T ), i.e.,
the probability that A wins GAME2 via Type I break. Suppose
p∗
i ̸= pi for some i. Then, they must differ in at least one

position j, i.e., p∗
i (j) ̸= pi(j). Define set Ij as all k’s that

satisfy p∗
k(j) ̸= pk(j). Then, combining Eq(9) and the fact

that p∗
i (j) = pi(j) for ∀i /∈ I , we have:∑

i∈Ij

βi · (p∗
i (j)− pi(j)) = 0 (11)

However, since the vector (βi, idi ∈ Ij) appears as random
vector to A, thus the probability that the nonzero vector
(p∗

i (j)−pi(j), i ∈ Ij) evaluates the random vector (βi, i ∈ I)
to zero is exactly 1/q. Thus, Pr(W2 ∧ T ) = (1/q) · Pr(T ).

Then, we evaluate Pr(W2∧ T̄ ), i.e., the probability that A
wins GAME2 via Type II break. Without loss of generality,
assume A has queried (idi,pi) for all 1 ≤ i ≤ n− 1, but has
not queried (idn,pn). Then, we have the follow two equations:

α

n−1∑
i=1

βipi +

n−1∑
i=1

βiγi =

n−1∑
i=1

βiti (12)

α
n∑

i=1

βipi +
n∑

i=1

βiγi =
n∑

i=1

βit
∗
i (13)

By subtracting Eq(12) from Eq(13), we have:

βnαpn + βnγn =
n∑

i=1

βit
∗
i −

n−1∑
i=1

βiti (14)

Since βn ̸= 0, we have:

αpn + γn =
n−1∑
i=1

βi

βn
(t∗i − ti) + t∗n (15)

There are two cases: (1) A has never queried idn; (2) A has
queried idn for (idn,p′

n) with p′
n ̸= pn. For case (1) we know

γn is a random value, and thus the left side of the second line
of Eq(15) is a random number, and this equation holds with
probability of 1/q. Now, consider case (2), where we have:

αp′
n + γn = t′n (16)

By substracting Eq(16) from Eq(14), we have

α(pn − p′
n) =

n−1∑
i=1

βi

βn
(t∗i − ti) + t∗n − t′n (17)

The right side of the equation is a fixed value, and pn−p′
n ̸= 0.

Since from A’s perspective, α appears as a random vector,
then this equation holds with probability 1/q. Combining case
(1) and (2), we have Pr(W2 ∧ T̄ ) = (1/q) · Pr(T̄ ). Finally,
we have:

Pr(W2) = Pr(W2 ∧ T ) + Pr(W2 ∧ T̄ )

= (1/q)(Pr(T ) + Pr(T̄ )) = 1/q
(18)

Combining Eqs(6)(7)(8)(18), we proved Theorem 2.
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