
CORA: Conflict Razor for Policies in SDN
Hao Li∗†, Kaiyue Chen∗†, Tian Pan‡, Yadong Zhou†, Kun Qian∗§

Kai Zheng¶, Bin Liu§, Peng Zhang∗†, Yazhe Tang∗, Chengchen Hu∗†
∗Department of Computer Science and Technology, †MOE KLINNS Lab, Xi’an Jiaotong University

‡Beijing University of Posts and Telecommunications §Tsinghua University ¶2012 Labs, Huawei Technologies

Abstract—Software Defined Network (SDN) enables flexible
update of network functions with a well-defined abstraction
between the control and the data plane. However, multiple
active network functions with the same priority will potentially
trigger conflicts among policies with overlapped flow space,
causing the flow table explosion. In contrast to the local switch
conflict resolution schemes proposed by previous works, this
paper tackles the same problem from a different angle and
resolves the policy conflict problem by coordinating all switches
under a global centralized view. Specifically, we propose COnflict
RAzor (CORA), which tremendously reduces the storage cost
of conflicting policies leveraging the global network information
obtained in the controller. The basic idea of CORA is migrating
policies causing large explosions across the network if necessary,
while keeping the semantics equivalence. We prove CORA’s NP
hardness and propose a heuristic to efficiently search a near-
optimal policy migration strategy. Our experiments demonstrate
that, CORA can effectively reduce the flow table storage occu-
pation by at least 49% within less than 40 seconds.

I. INTRODUCTION

Software Defined Network (SDN) decouples switch’s con-
trol and data plane, offering enhanced programmability via
a higher-level abstraction (i.e., intent-based NBI) to flexibly
implement a variety of network functions. During the network
operation, the operator’s intents would be firstly compiled
into distributed policies, associating the packet class (i.e.,
flow) with the corresponding actions (e.g., forward, drop,
count) for each underlying switch. The policies would be
further translated into hardware-specific rules when loaded
into a particular device, e.g., prefix entries for Ternary Content
Addressable Memory (TCAM). However, policies issued by
different controllers (NBIs) may specify different actions on
an overlapped flow space at the same network device. The
so-called “policy conflicts” should be resolved to perform
the correct combination of the actions. But, such conflict
resolution will potentially incur either performance penalty or
resource inefficiency for the underlying network.

Considering that a QoS function and a monitoring function
coexist in a network, where the former has a policy at switch
s to limit the bandwidth to 10Mbps for packets with DstPort
range 1-6, and the latter sets a policy to count the number
of packets with DstPort range 2-7 at the same switch. Such
two policies are conflicting due to the different actions on
the overlapped port range 2-6. A straightforward method to
cooperate these two policies in a single switch is to split them
into three sub-policies with non-overlapping flow spaces: (P1)
1-1→limit 10Mbps, (P2) 2-6→limit 10Mbps and count, and

(P3) 7-7→limit 10Mbps1. Intuitively, fragmented policies will
inevitably be generated when resolving conflicts. In a bad case,
each policy at the switch would be conflicting with all others,
producing many more sub-policies on fragmented flow spaces.
In addition, when it comes to multi-dimension conflicts in
many flow entry fields, things will get even worse than the
single-field scenario. As a result, the rule conflicting problem
aggravates heavily in the context of SDN, since the switch
checks more fields other than the traditional 5-tuples. Please
notice that the number of extra generated policies does not
reflect the complete overhead, because it may be much more
costly when translating the policies into hardware-specific
rules. For example, to represent a value range of packet fields
like DstPort, a TCAM-based switch has to convert the range
into one or more prefix entries during the so-called “rule
expansion” process, e.g., at least three entries (110, 01*, 10*)
are needed for the above DstPort range 2-6.

In the literature, many works have investigated the mecha-
nisms of efficient conflict resolution. One possible way is to
find a more efficient cut of the flow space by creating a new
policy on the overlapped flow space with a higher priority
while retaining the original ones with a lower priority [9].
This may avoid producing too many flow space fragments,
since the policies that are fully covered by the higher-priority
ones are redundant and can be eliminated to save memory
cost. However, even with this technique, extra policies would
be inevitably generated as long as one flow space does not fully
cover the other. Another attempt is to reduce/minimize the rule
expansion specifically for TCAM-based devices [4, 12, 14, 17–
19]. However such low-level optimization does not address the
root cause of the policy conflicts either, and in the worst case, a
W -bit range value (indexed by some policy) will consume W
TCAM entries [24]. Although the OpenFlow specification [1]
proposes the flow table pipeline to mitigate the aftermath of
policy conflicts, simply employing such pipeline will dramat-
ically increase either the number of flow tables or the bit
width for each flow table. Network slicing solutions [2, 6, 15]
provides individual flow spaces for each network function to
isolate the conflicts, which actually disables multiple network
functions to operate on the same traffic. Nowadays, many high-
level SDN languages offer the resource constraints in their
syntaxes and compilation process, which can be adopted to
generate a more optimal placement of policies to mitigate

1There are definitely other solutions to divide the flow space more effi-
ciently. We will discuss them in the latter sections, and only demonstrate a
base case here.

the conflicts beforehand [3, 10, 23]. However, this requires
the global view of all operators’ intents, which violates our
assumption: the intents may be issued by individual operators
from different controllers that cannot cooperate at the language
level [9].

We observe that the policy/rule explosion is ascribed to
the flow space overlaps, and as a result, our basic idea is
to move/migrate the conflicting policies from the local switch
to reduce the overlaps and further decrease the #policies and
entries. The prerequisite is to ensure that all network function
will always hold their semantics after moving/modifying the
policies, i.e., the flows should be forwarded to the original
destination along the same path with the same actions applied,
e.g., rewrite, count, mirror to controller, etc. SDN offers
the global information of data plane policies, which can
be utilized to guarantee the above requirements. Recall the
aforementioned example, the conflicts can be eliminated if we
move the counting policy from the switch s to an adjacent
switch s′ along the routing path of the flow, since the flow
forwarding behavior remains the same and the counting action
can be applied at any switch along the path.

Based on the above insights, we propose COnflict RA-
zor (CORA) to efficiently resolve the policy conflicts in
SDN, which collects policies from all network functions,
and migrates the conflict-makers from the current switch to
other feasible switches to relieve the conflicts while keeping
the equivalent semantics. It is worth of noting that CORA
focuses on efficiently eliminating the conflicts in the global
network, thus can well cooperate with any existing solution
that reduces/minimizes the #policies at a single switch.

In summary, we make the following contributions.

• We explore the potential benefits and technical challenges
of migrating policies across the network, and propose
semantics-preserving migration mechanisms to address
the challenges, e.g., retaining the routing paths, slicing
the endpoint actions, etc.

• We formally define the problem of finding an optimal pol-
icy placement with many policy conflicts. After proving
its NP hardness, we give some heuristics to fast generate
a near-optimal placement.

• We implement a prototype of CORA, and use synthetic
policy configurations and topologies to evaluate its per-
formance. The experimental results show that CORA can
reduce at least 49% of the total conflict overhead within
acceptable time, while retaining the original intents.

The reminder of this paper is organized as follows. Sec-
tion II demonstrates the policy conflict problem and our basic
idea. Section III proposes the semantic-preserving transferring
to retain the high-level intents. Section IV defines the problem
of finding an optimal placement from the global view, and
design a heuristic algorithm to obtain a near-optimal solution
within acceptable time cost. Section V evaluates CORA’s per-
formance. And after discussing the related work in Section VI,
Section VII concludes this paper.

II. TRANSFER POLICY TO RAZE THE CONFLICTS

A. Policy Conflict Problem

SDN high-level languages specify two categories of oper-
ators’ intents: the routing intent and the endpoint intent [10].
The routing intent is to specify the paths between the ingress
and egress of s packet class, driven by traffic engineering
goals. The endpoint intent focuses on the end-to-end packet
behaviors other than forwarding, e.g., counting, mirroring
to controller, modifying header, etc. In the single-controller
scenario, such intents are issued by a same NBI, and the
controller would compose and compile them into distributed
policies, while the policies in each switch have been properly
prioritized [3, 23]. However, it has been advocated that multi-
ple controllers should coexist in a network with a hypervisor,
which provides the ability of running any combination of con-
troller applications [9]. Therefore, the policies from different
controllers can have overlaps with a same priority, triggering
the policy conflicts. Notice that due to the language-barrier of
different NBIs, the existing hypervisors cannot reconcile the
policies at the language level, but only resolve them in the
local switch.

Formally, a policy can be denoted as p = (sw, pri, fs, a),
where sw is the switch storing the policy, pri is the priority
of the policy, fs is a hyperspace with different fields to
describe the flow space, and a is the action set that applies
on fs. Two policies p1 and p2 conflicts, iff p1.sw = p2.sw,
p1.pri = p2.pri, p1.fs ∩ p2.fs 6= ∅ and p1.a 6= p2.a

2. To
resolve such conflict, a naive method is to fully decouple the
overlapped space into continuous fragments, each of which
performs the combination of actions from corresponding poli-
cies. For example, the above two conflicting policies would
be decoupled into three ones: p′1 = (p1.sw, p1.pri, p1.fs \
p2.fs, p1.a), p′2 = (p1.sw, p1.pri, p2.fs \ p1.fs, p2.a), and
p′3 = (p1.sw, p1.pri, p2.fs ∩ p1.fs, p1.a ∪ p2.a). Notice that
these three policies may expand to more because the flow
space like p1.fs \ p2.fs may not be continuous, which will
be further transformed into two policies. In the worst case,
one policy would conflict with all the other policies, and the
naive decoupling process will lead to a policy increase at
a complexity of O(N2), where N is the #original policies.
Fig. 1 illustrates a simple example of policy conflict in two
dimensions DstIP and SrcIP, where P1 is a QoS policy to limit
the bandwidth and P2 is to count the #packets. The flow space
would be cut into five sub-spaces to fully resolve the conflict.

The naive method is not efficient enough when the conflicts
result from the inclusion of flow space. Taking the above two-
dimension conflict as an example, P2 includes P1 from the
perspective of X axis (SrcIP). Therefore, it is not necessary
to divide the X axis into three segments, instead, the original
P2 can be retained and a new policy would be added with
higher priority that represents the overlapped flow space in X
axis. We can apply similar analysis in Y axis, and as a result,
only one extra policy is needed to resolve the conflict (the

2In the following sections, we assume the involved policies have the same
priority if not specified.

DstIP

Sr
cI
P

P1
P2

P1
P2
P3

DstIP

Sr
cI
P

Fig. 1. Two policies conflict on
two fields.

Fig. 2. More conflicts caused
by a third policy.

TABLE I
THE POLICIES TO DECOUPLE THE CONFLICTS IN FIG. 2

P FlowSpace Action Pri

1 P1.fs ∩ P2.fs ∩ P3.fs P1.a ∪ P2.a ∪ P3.a 3
2 P1.fs ∩ P3.fs P1.a ∪ P3.a 2
3 P2.fs ∩ P3.fs P2.a ∪ P3.a 2
4 P1.fs P1.a 1
5 P2.fs P2.a 1
6 P3.fs P3.a 1

solid shadowed part in Fig. 1), i.e., P ′ = (P1.sw, P1.pri +
1, P1.fs ∩ P2.fs, P1.a ∪ P2.a).

However, the above priority-based method is still not effi-
cient enough to tame the explosive growth of policies. The
reason lies in that this method only works for inclusion cases,
which would commonly happen in IP fields due to the prefix
representation. In contrast, some fields like DstPort and Src-
Port are represented by ranges, which leads to overlaps rather
than inclusions in most cases, and cannot be resolved by the
priority-based method. For example, Fig. 2 adds a third rule P3

with the same priority to the example in Fig. 1, and they will be
transformed into six policies even we sophisticatedly prioritize
the overlaps, as shown in Table I. Even worse, many switches
use TCAM to implement the flow tables, which would expands
the entries to represent the range values [18]. Formally, each
range defined over a W -bit field can be encoded in W entries
with the internal expansion in the worst case, and if the flow
space specifies W ranges on d fields, it will consume up to W d

entries in TCAM [24]. Since the policy conflicts are producing
more fragments on the flow space, the overhead in the real
scenarios would go far beyond the O(N2) complexity, and
squeeze the limited TCAM resources.

B. Basic Idea of CORA

All the existing techniques focus on how to minimize the
overhead when decoupling the conflicts. In contrast, CORA
treat the same problem from a different angle, aiming to
eliminate the conflicts by migrating the policies, i.e., to reduce
the #conflicts in global network instead of #expanded policies
in a local switch.

Considering a simple linear topology with two switches S1

and S2, the policies at each switch are shown in Fig. 3. It
needs 16 and 7 sub-policies to fully decouple all the conflicts
in S1 with naive and priority method, respectively. However,
if we transfer P2 to S2 as shown in Fig 4, only 4 sub-policies

P1
P2
P3
P4

DstIP

Sr
cI
P

(a) Policies in S1

P5

DstIP

Sr
cI
P

(b) Policy in S2

Fig. 3. The policy placement in two adjacent switches.

P1
P3
P4

DstIP

Sr
cI
P

(a) Policies in S1

P5

P2

DstIP

Sr
cI
P

(b) Policies in S2

Fig. 4. The new policy placement solution if transferring P2 from S1 to S2.

are produced in S1 with priority method, and S2 generates no
more policies other than P2 from S1, which means the overall
#policies decreases from 8 to 6. The performance gain can be
more significant for TCAM-based switches.

The above simple example shows the potential benefits
if properly migrating policies. However, arbitrarily migrating
policies may break the high-level intents from the operators.
Recall the above simple network configurations, there are
many prerequisites to transfer P2 to s2. First, P2 cannot be
a routing policy that forwards the packet, since such transfer
would produce a black hole at s1 for the packets that match
the flow space of P2. Second, P2 can be transferred to s2
only when there is other routing policy that forwards all the
packets in P2’s flow space to s2 (e.g., P3), or P2’s action
cannot be properly triggered. These special cases need to be
carefully addressed to retain the original high-level intents.
The other challenge is to find an optimal policy placement
with acceptable time cost. The #policy in network can easily
reach 1000+ with highly dependent conflicts, e.g., P2, P3

and P4 have common overlaps, while they also pairwisely
conflict with each other. Simply exhausting all possible policy
placements is obviously infeasible in time cost, because the
#policy combinations can be up to 2n for n policies.

In summary, to well design CORA, we need to address the
following major challenges.

Semantics equivalence. The transferring operations should
be semantics-preserving, which guarantees the correct fulfill-
ment of multiple network functions.

Optimal placement. After policy transferring, rules must
satisfy the constraint of the physical switch capacity, and is
expected to be minimal in the network.

III. SEMANTICS-PRESERVING TRANSFER

It is not trivial to correctly transfer the policies because
arbitrary change of the policy placement may break the high-
level intents, i.e., routing intent and endpoint intent.

A. Routing Intent

The routing intent would be compiled into routing policies
for individual switches, each of which forwards the packet to
the next hop. That is, there lies strong dependencies between
the those policies; if we transfer one routing policy to another
switch, we have to modify the related routing policy at the
previous hop, and we may need to create new routing policies
to fulfill a complete routing path. Besides, we cannot guarantee
the traffic engineering requirements are satisfied by the new
path, because such intents are hidden in the compilation
process, and cannot be reverse engineered from the policies.
Therefore, the routing policies are considered as fixed in
CORA to ensure the semantics equivalence of routing intent.

Please notice the conflicts between two routing policies are
not resolvable in CORA, because we cannot forward a single
packet to two different next hops. Such conflicts may happen
if multiple controllers decide the routing paths individually,
and resolving them need composing the routing intents at
a higher semantics level [16]. In this paper, we assume the
routing intents are handled by a single controller application,
or the flow space is isolated for different routing applications,
i.e., the routing policies are not conflicting with each other.

B. Endpoint Intent

The endpoint intent is to perform specific actions on the
packets, and such intent will hold, as long as the actions is
triggered for all the packets whose headers fall in the flow
space. Initially, the endpoint intent would be compiled into
several endpoint policies, each of which covers partial flow
space of the intent. The split of the flow space depends on the
placement of the routing intent, since it is possible that not all
packets in the flow space traverse a single switch. The intuitive
idea is to transfer the endpoint policy along the routing path, as
long as the target switch has the ability to perform the action.
To be specific, we have the following principles of transferring
endpoint policies.

First, the flow space of the routing policy that covers the
endpoint policy should be consistent through the transferring,
or the endpoint policy needs to be further divided. Considering
a routing policy Pfwd that forwards the packets with DstPort
1–6 to port 1, and an endpoint policy Pcnt that counts all pack-
ets with DstPort 2–7, Pcnt cannot be directly transferred to the
switch that connects to port 1, since it will fail to count the
packets with DstPort 7. As a result, we need to divide Pcnt into
two policies, Pcnt,1 = (Pcnt.pri, Pcnt.fs ∩ Pfwd.fs, count)
and Pcnt,2 = (Pcnt.pri, Pcnt.fs \ Pfwd.fs, count), and we
can transfer Pcnt,1 through port 1. To this constraint, an
endpoint policy (or a slice of an endpoint policy) pe in switch
s can be transferred through port i, if there exists a routing
policy pf in switch s, where pe.fs ∈ pf .fs and pf .a = fwd(i)
(forward transferring), or there exists a routing policy pb in

switch s′, where pe.fs ∈ pb.fs, pb.a = fwd(j) and port j in
s′ connects to port i in s (backward transferring). Here we
only discuss the one-step transferring to the pre or next hop,
and the multi-hop transferring can be seen as a combination
of multiple one-step moves.

The above principle only ensures the semantics if there is
only one endpoint intent, because the dependency between
endpoint intents may further constrain the placement of end-
point policy. Considering an endpoint policy pm modifies the
VLAN id to 10 for the packets with VLAN id 1, and another
policy pc counts the packets with VLAN id 1, the order of
triggering the two policies reflects the high level intent; if
pc is triggered before pm, the two policies just stick to their
scripts; otherwise, pc is only to verify whether pm correctly
works. We assume the initial placement has already satisfied
the high level intent, and therefore, the order of triggering
the two policies cannot be violated. More generally, we say
p1 depends on p2, if p2.a will cut or produce packets to be
processed by p1. To maintain the original intents, the order of
two dependent policies cannot be changed. For example, if an
endpoint policy is conflicting with a header modifying policy,
then it can only be transferred between the ingress/egress and
the header modifying policy.

Please notice that this constraint also forbids the transferring
of header modifying policies, because the routing policies
definitely depend on header modifying policies; if we transfer
it to the next hop, the modification would break the routing
path, because there is no routing policy that handles the
unmodified headers in next hop; likewise, the pre hop is also
infeasible, because there is no routing policy to forward the
modified headers in the current switch.

In summary, we say a policy (or a slice of policy) can be
transferred to a certain switch, if it satisfies the above two
constraints, i.e., the routing policy restriction and the order
of critical actions. Following this definition, we further define
a one-step semantics-preserving function ST , which takes a
policy p and an adjacent switch s as the input, and outputs a set
of new policies. Specifically, ST (p, s) = ∅, if neither p nor a
slice of p can be transferred to s; ST (p, s) = {p[sw 7→ s]}, if
p can be completed transfer to switch s; ST (p, s) = {p[fs 7→
p.fs \ p′.fs], p′[sw 7→ s]}, if a slice of p, denoted as p′, can
be transferred to switch s. The notation p[f 7→ v] is to replace
p.f with value v.

IV. FINDING OPTIMAL PLACEMENT

A. Problem Formulation

The goal of policy migration is to recursively find a better
placement that leads to a reduced #rules in the data plane.
Previously, the optimal policy placement has been discussed
in several papers [3, 10], most of which models the problem
as follows: n policies should be assigned to m switches, while
each assignment (policy j to switch i) has its profit pij and
cost wij , and each switch has its capacity Wi. The goal is
to maximize the profits while assuring each switch does not
run out of its capacity. Such model captures the well-known
general assignment problem (GAP), thus is also NP-Hard.

Procedure: Policy Divide
1: P ← Pe

2: for all p in P do
3: for all s that connect to p.sw do
4: if |ST (p, s)| > 1 then
5: P ← P \ {p} ∪ ST (p, s)

Fig. 5. Divide the original policies into fragments, so they can be indepen-
dently transferred.

However, the original GAP assumes the cost wij is fixed, and
not dependent of the placement of other policies, while in our
scenario, wij depends on the policies previously assigned to
switch i, because #rules varies to the conflicts between the
policies in the same switch.

In this paper, we define the above extended placement
problem as policy optimal placement problem with dependent
cost (POPDC). To address such problem, we divide POPDC
into two sub-problems: (1) decide the combinations of poli-
cies (DCP), and (2) assign the combinations to the switches
(ACS). These two sub-problems are independent, because
DCP only considers the penalty of putting certain policies
together, which determines the total #policies/rules of the
network, while ACS focuses on finding an optimal placement
for the combinations to satisfy the capacity constraint. In
the following, we will first define the variables involved in
POPDC, and address the two sub-problems respectively.

Variables and notations. The first variable in POPDC is the
policy set that to be assigned, denoted as P , which however
cannot directly map to the original endpoint policy set Pe.
The reason is that it is possible that the policy cannot be
assigned to a certain switch, or only a slice of the policy can
be transferred to that switch, due to the semantics-preserving
transfer restriction. To address this problem, we utilize the one-
step semantics-preserving function ST to divide the policies
into fragments, each of which can be independently assigned
to a switch. The set of these fragments forms the policy set
P . The divide process is illustrated in Fig 5.

The other variables in POPDC is quite straightforward:
there are m switches in the network, each of which has a
capacity Wi. We use S to denote a set of policies, and w(S)
represents the cost of decoupling S, which can be measured
with #decoupled policies or #expanded rules.

DCP: decide the policy set to be assigned. To model
DCP, we first expand all the candidate policy set. Assume we
have l policies, there are 2l candidate combinations of policies,
the set of which is denoted as S = {Si}, i = 1, .., n, where
n = 2l. Our goal is to find a subset of S, denoted as C, to
satisfy the following requirements: (1) the number of selected
sets must not be larger than the number of switches, (2) the
policy combinations in C are pairwise disjoint, (3) the union
of C equals to P , and (4) the total cost of C is minimal.
The first goal constrains the #sets to the #switches, or the sets
cannot be assigned to switches independently. The second and
third goal is to seek a disjoint set cover of P and the last goal
is to minimize the total costs, i.e., #policies/rules.

Based on the above analysis, we formulate DCP with the
following integer linear program.

maximize
∑
s∈S

(xs/
∑
ps∈s

w(ps)) (1)

subject to
∑
s:e∈s

xs = 1, for all e ∈ P (2)∑
s∈S

xs ≤ m, for all s ∈ S (3)

xs ∈ {0, 1}, for all s ∈ S (4)

Eq. (1) is to maximize the profit of the selected policy sets,
where the profit is defined as the reciprocal of the policy set
cost. Eq. (2) restricts that every policy must be selected exactly
once to produce a set cover. Eq. (3) constrains the #sets to
#switches. Eq. (4) defines a 0-1 variable to represent every
set is either selected or not. It is clear that DCP has the same
representation with weighted disjoint set cover problem, which
has been proved to be NP-Hard [22].

ACS: assign the policy sets to switches. Given an optimal
policy sets C by DCP, the next step is to assign them to dif-
ferent switches. The goal of ACS is to ensure the assignment
will not exceed the capacity of each switch. Assume we have
n policy sets in C, m switches in the network, n ≤ m, we
can formulate ACS with the following integer linear program.

maximize
m∑
i=1

n∑
j=1

xij (5)

subject to
n∑

j=1

rijxij ≤Wi, i = 1, ...,m (6)

m∑
i=1

xij = 1, j = 1, ..., n (7)

n∑
j=1

xij = 1, i = 1, ...,m (8)

xij ∈ {0, 1}, i = 1, ...,m, j = 1, ..., n(9)

Notice we introduce a new cost parameter rij to represent
the cost of assigning set j to switch i. Specifically, rij =
w(Cj), if all policies in Cj can be transferred to switch i;
rij = ∞, if at least one policy in Cj cannot be transferred
to switch i. With Eq. (5)–(9), ACS can be reduced to GAP,
if we assume the profit of assigning a policy set equals to 1.
Therefore, ACS is a NP-Complete problem.

In summary, due to the high complexity of both DCP and
ACS, POPDC cannot be solved in polynomial time.

B. Heuristics of Near-Optimal Placement Searching

Since we have reduced POPDC to two well-known NP prob-
lems, an intuitive idea is to utilize the existing approximate
algorithms to find near-optimal solutions. However, the first
step of modeling DCP, i.e., expanding all the possible policy
combinations as the candidates, would largely impact the total
complexity of solving DCP, because it exponentially increase
the problem scale. Therefore, in this section we propose

Procedure: Pre-Computing the Policy Cost

1: Psw ← {{p ∈ Pe|p.sw = i}, i = 1, ..., n}
2: for Pi in Psw do
3: for all p in Pi do
4: p.cost← c(Pi)− c(Pi \ {p})
5: sort Pe by the policy cost in descending order

Procedure: Greedy Searching for Optimal Placement

1: Pre-Computing the Policy Cost
2: Compute C, D, K, T , O according to the cost
3: B ← T/(C ×D)−O
4: i← 0
5: while true do
6: while true do
7: cm← Pe[i]
8: ts← cm.s
9: for all s that connects to cm.s do

10: ST (cm, s) and update C, D, K, T , O accordingly
11: b← T/(C ×D)−O
12: if b > B then
13: B ← b; ts← s
14: draw back the transfer of cm and restore C, D, K,

T , O accordingly
15: if ts = cm.s then
16: break
17: ST (cm, ts) and update C, D, K, T , O accordingly
18: update the cost of policies in original cm.s and ts
19: sort Pe by the policy cost in descending order
20: B ← T/(C ×D)−O
21: i← 0
22: i← i+ 1
23: if i > |Pe| then
24: break

Fig. 6. Greedily searching for the optimal placement, each time transferring
the highest-cost policy to a switch that leads to the largest profit.

some simple heuristics to approximately approach the optimal
policy placement, under the acceptable time consumption.
Specifically, the optimal placement is expected to satisfy the
following requirements: (1) #rules in each switch should not
go beyond the capacity of the switch, (2) the total #rules
are minimized for the entire network, and (3) the standard
deviation of #rules in each switch should be minimized, so it
is not likely to overflow when a new policy comes.

Our basic idea is to greedily find a “conflict-maker”, i.e., the
highest-cost policy, among all endpoint policies Pe, and itera-
tively make a one-step semantics transfer to the target switch
that leads to the best profit. The cost of policy p is measured by
the total cost decrement of switch s if we remove p from s. To
find a conflict maker, a straightforward method is to traverse
all policies, while simple heuristics and optimizations can be
applied for this searching; we can use #conflicts produced
by the policy as the cost instead of measuring the precise
#rules, which may reduce the searching time, especially for
TCAM-based switches; we can pre-compute the cost of all
policies beforehand, because the transferring only impacts
two switches, and it does not need to re-compute the cost
for policies in the rest switches, which could accelerate the
conflict-maker searching in the next round. With the conflict
maker, we have to choose where to transfer it for larger profit.

Specifically, we use K to denote the #switches that exceeds
the capacity in current placement, and O to denote the total
#exceeded rules in the network. We further define D as the
standard deviation of the cost for each switch, and use C to
denote the total cost of the placement, which can be measured
with #policies or #rules. Based on these notations, we define
the profit of a placement as B = T/(C × D) − O, where
T = 0, if K > 0, and otherwise T = 1.

The searching process is to seek a better profit through
the semantics-preserving transfer to the conflict-maker. If
transferring any policy under current placement would not lead
to a larger B, the process ends, and the current placement is an
optimal solution if B > 0. The complete process is illustrated
in Fig. 6. Notice if B ≤ 0, the solution is not acceptable due to
the exceeded capacity, which needs to be reported to operators
for further process.

Incremental placement update. The optimized placement
needs to be incrementally adjusted when adding or deleting
policies. If a policy p is deleted from switch s, we just remove
all the sub-policies that produced by p (including p itself).
Since the cost of s must be reduced due to the removal, we
only need to recompute the profit of the adjacent switches
of s, to see whether some additional transferring can make
larger profit. If a policy p is added to switch s, we compute
the conflicts it produces with the existing ones, and since the
cost of s must be increased, we only need to try limited policy
transferring from s to obtain a new optimal placement. The
policy modification can be seen as a combination of deleting
a policy and adding a policy. In practice, it is common that a
group of policies are updated for an entire routing path, and
we can re-perform CORA after that batch update.

V. PERFORMANCE EVALUATION

A. Evaluation Settings

In this section, we evaluate the semantics equivalence
and optimization performance of the migrating operation in
CORA. We implement CORA with ∼2000 lines of python
code, which takes the topology, the capacity of switches, and
the current policy placement as the input, and produces a new
placement as the output.

We test CORA in three topologies, Stanford Backbone [13]
and FatTree (k = 4, k = 8), which have 26, 20, and 80
switches respectively. For each topology, we slice the global
network address (0.0.0.0–255.255.255.255) into n sections,
where n is the #edge switches in the topology. We assign
those network sections to the edge switches as the host IP
they connect to. We then simulate abundant high-level intents
for the topology. Specifically, we use ClassBench [27] to
generate packet classification rules (SrcIP/Mask, DstIP/Mask,
SrcPortRange, DstPortRange, Action), which can be regarded
as the endpoint intent. The Action in the rules is just an integer
number indicating different endpoint actions, and we choose a
specific number to denote the header modifying action, which
modifies the SrcIP and SrcPort randomly, to simulate an NAT
function. The default rules with long mask length are removed.

TABLE II
THE POLICY CONFIGURATIONS USED IN THE EVALUATIONS.

topology #expanded
policies #rules standard

deviation
#overflow
switches

C1

Stanford 4193 4902 586.07 1
Fattree(4) 4094 5418 231.35 3
Fattree(8) 3507 4888 107.60 3

C2

Stanford 11375 12876 2041.76 2
Fattree(4) 10278 18017 2811.52 3
Fattree(8) 8054 12906 834.19 2

C3

Stanford 45175 47719 5383.16 5
Fattree(4) 41040 58175 7913.27 4
Fattree(8) 32592 34479 2904.13 5

By mapping the SrcIP and DstIP ranges to the edge switch,
we obtain the corresponding routing intent; the simple shortest
path is generated by SrcIP and DstIP, and we split the intent
if the IP ranges cross network sections. Then we can generate
routing policies for each switch according to the routing intent,
and randomly place an endpoint policy along the routing path
by the endpoint intent. Notice if the endpoint policy is a
header modifying policy, we need to adjust the routing policies
in the post switches to maintain the forwarding path. In our
evaluations, the capacity of each switch is set to be 500.

Based on the above settings, we generate three configu-
rations for the evaluations, as shown in Table II, where the
#expanded policies is measured by the priority method, and
#rules represents the entries used in TCAM-based switches.

B. Semantics Equivalence

We use header space analysis (HSA) to verify the semantics
equivalence of CORA [13]. Specifically, we test all pairwise
connectivity on the generated topologies and policy sets, and
record the internal forwarding path as well as the ID of actions
when traversing the network. The results show that both the
forwarding path and the triggered actions are the same before
and after performing CORA. That is, the semantics-preserving
transferring provided by CORA retains the high-level intents.

C. Placement Optimization

We apply the heuristic algorithm proposed in Section IV to
reconcile an optimal placement that leads to lower cost of the
global network. Two key metrics are measured to evaluate the
performance of CORA, the global policy cost, and the standard
deviation of policy placement. We use the priority method
to optimize the policies in the single switch, and assume
the data plane uses TCAM-based switches to demonstrate
the significance, so that the policy cost is measured by the
#expanded rules.

Fig. 7 shows the policy cost decrement after performing
CORA for three policy sets on different topologies. In average,
79.78% policy cost can be eliminated by properly transferring
policies, and the decrement can go up to 96.31% for severe
conflicting policy placement. Fig. 8 depicts similar improve-
ments of standard deviation obtained by CORA, 96.22% and
99.73% decrements are achieved in average and at most,
respectively.

In fact, the performance of CORA is determined by two
factors. The first is the maldistribution of policies in the
first place; if the standard deviation is high for the original
placement, large profit can be expected by finding an even
distribution solution. For example, C3 on Fattree (k = 4) has
a higher deviation than it on Fattree (k = 8), thus leads to
a more significant decrement on the policy cost, as shown
in Fig. 8(b), (c) and Fig. 7(b), (c). Second, the optimization
efficiency of CORA is dependent on how many target switches
can be transferred to for a single policy; more targets means
larger searching space and better chance of achieving a more
optimal solution. For example, due to the worse connectivity,
policy sets on Stanford topology obtains lower decrements
than them on Fattree (k = 4) topology (80.15% vs. 85.42% in
average), though it has more switches (26 vs. 20), as shown
in Fig. 7(a), (b).

D. Overhead
We measure the time cost of performing CORA on different

policy configurations to ensure the optimization can be done
within acceptable overhead. Fig. 9 shows that most optimiza-
tions can be done within 40 seconds.

The impact factors of the time cost of CORA are similar
with them of optimization efficiency, i.e., the distribution of
policy and the connectivity of the topology. Maldistribution
and better connectivity need more time to achieve a good
placement. Taking the two Fattree topologies as an example,
Fattree (k = 4) has a large deviation with a relative worse
connectivity, while in contrast, the policies are distributed
more evenly in Fattree (k = 8) that has better connectivity.
Therefore, the time cost of these two topologies are similar,
as shown in Fig. 9(b), (c). Such feature also improves the
scalability of CORA when handling large topologies.

We next simulate the scenario that many policies are up-
dated by the high-level intents. Specifically, we randomly add
policies and delete policies on an optimized placement, and
measure how long it takes to reach a new optimal placement
for CORA. Fig. 10 shows the time cost when modifying 10%–
25% of the policies on Fattree (k = 4) topology. Due to the
incremental update algorithm used in CORA, limited policies
and switches are involved for recomputation, so the time cost
is small (< 15 seconds) and stable.

VI. RELATED WORK

Many work have been done for efficient policy placement
in the network. However, those works also have limitations in
one or some of the following aspects.

Although compressing the flow tables for IP lookup and
firewall in traditional network has been widely studied, only a
limited number of fields (mostly five tuples) are involved [4,
12, 14, 17–19]. In SDN scenario, switches in the data plane
may check an unbounded number of match fields to realize
fine-grained flow control, which drastically increases the com-
plexity of applying the traditional compressing methods.

Another attempt to avoid the policy conflicts is to slice the
network into pieces, providing isolated flow spaces for dif-
ferent network functions or tenants [2, 7, 15]. However, such

 0

 1

 2

 3

 4

 5

 6

C1 C2 C3

#
ru

le
s

(×
10

00
0)

Policy Sets

before
after

(a) Stanford

 0

 1

 2

 3

 4

 5

 6

C1 C2 C3

#
ru

le
s

(×
10

00
0)

Policy Sets

before
after

(b) Fattree (k = 4)

 0

 1

 2

 3

 4

 5

 6

C1 C2 C3

#
ru

le
s

(×
10

00
0)

Policy Sets

before
after

(c) Fattree (k = 8)
Fig. 7. The #total rules decrement after performing CORA.

 1

 4

 16

 64

 256

 1024

 4096

C1 C2 C3

St
an

da
rd

 d
ev

ia
tio

n

Policy Sets

before
after

(a) Stanford

 1

 4

 16

 64

 256

 1024

 4096

C1 C2 C3

St
an

da
rd

 d
ev

ia
tio

n

Policy Sets

before
after

(b) Fattree (k = 4)

 1

 4

 16

 64

 256

 1024

 4096

C1 C2 C3

St
an

da
rd

 d
ev

ia
tio

n

Policy Sets

before
after

(c) Fattree (k = 8)
Fig. 8. The standard deviation decrement after performing CORA.

 0

 10

 20

 30

 40

 50

C1 C2 C3

Ti
m

e
Co

st
 (

s)

Policy Sets

(a) Stanford

 0

 10

 20

 30

 40

 50

C1 C2 C3

Ti
m

e
Co

st
 (

s)

Policy Sets

(b) Fattree (k = 4)

 0

 10

 20

 30

 40

 50

C1 C2 C3

Ti
m

e
Co

st
 (

s)

Policy Sets

(c) Fattree (k = 8)

Fig. 9. The time used for performing CORA on different policy sets and topologies.

 0

 10

 20

C1 C2 C3

Ti
m

e
Co

st
 (

s)

Policy Sets

(a) 5% adding + 5% deleting

 0

 10

 20

C1 C2 C3

Ti
m

e
Co

st
 (

s)

Policy Sets

(b) 7.5% adding + 7.5% deleting

 0

 10

 20

C1 C2 C3

Ti
m

e
Co

st
 (

s)

Policy Sets

(c) 10% adding + 10% deleting
Fig. 10. The time used when updating policies in Fatatree (k = 4) topology.

technique does not address the root cause of policy conflict:
it is common to observe that more than one applications may
be engaged in the same flow. Those applications will issue
policies for sharing resources, e.g., overlapped flow space.

Many SDN languages are proposed to facilitate composing
network with individual program pieces [3, 8, 20, 23, 28].
The corresponding controllers of these languages will carefully
place and prioritize the generated policies, so that the conflicts

are resolved in the first place. However, if multiple controllers
coexist in a single network, none of them can handle the
conflicts raise by the same-priority policies. Previous work that
efficiently place the endpoint policies in different priorities are
not suitable for this scenario due to the similar reason [10, 11].

Many existing approaches optimizes the storage of poli-
cies/rules in a local manner [4, 9, 12, 14, 17, 19]. We believe
with the global view offered by SDN, more benefit can be

gained by properly transferring the policies. Besides, as we
have mentioned in Section I, all the existing optimizations for
a single switch can be expediently employed in CORA.

The traditional placement problem is reduced to GAP, and
many existing approximate algorithms can be leveraged to
obtain an optimal solution [25]. However, if we involve the
policy conflicts into the problem, the cost of assigning a policy
to a switch is not independent, which cannot be transformed to
the original version of GAP. Several papers have investigated
GAP with dependent cost, while they either assume there’s
only pairwise dependency between assignments [5, 21], or just
employ a global dependent variable [26]. In contrast, POPDC
introduces more complex dependency, where the cost of each
assignment is dependent on all previous assignments.

VII. CONCLUSION

In this work, we propose CORA, a conflict razor for policies
in SDN. In contrast to the policy conflict resolution in a
local switch by most of the previous works, CORA solve
the same problem in a distributed way. Specifically, it first
detects the significant conflict-maker and then migrates it
from the local switch to other switches while retaining the
semantic equivalence. Since the centralized controller can
grasp the global view of the entire network, such global state
coordination is feasible. In this work, we identify CORA’s
NP hardness and propose a simple heuristic to approach
the optimal solution within an acceptable time bound. Our
experiments demonstrate that, CORA can effectively reduce
the flow table storage occupation by at least 49% within less
than 40 seconds. CORA can well collaborate with the existing
local conflict resolver.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their valuable comments. This work is partially supported
by the National Key Research and Development Program
of China (2017YFB0801703), NSFC (61702407, 61672425,
61702049, 61373143, 61432009, 61772412, U1736205,
61572397, U1766215, U1736205), Huawei Innovation Re-
search Program (HIRP), Fundamental Research Project of
Natural Science in Shaanxi Province (2016JM6066). Peng
Zhang is supported by the K. C. Wong Education Foundation.

REFERENCES
[1] Openflow switch specification version 1.5.1.

https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf.

[2] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow. Openvirtex: Make your virtual sdns
programmable. In Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, HotSDN ’14, pages 25–30, 2014.

[3] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker.
Snap: Stateful network-wide abstractions for packet processing. In
Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
pages 29–43, 2016.

[4] A. Bremler-Barr and D. Hendler. Space-efficient tcam-based classifica-
tion using gray coding. IEEE Transactions on Computers, 61(1):18–30,
2012.

[5] J. J. Burg, J. Ainsworth, B. Casto, and S.-D. Lang. Experiments
with the oregon trail knapsack problem. Electronic Notes in Discrete
Mathematics, 1:26–35, 1999.

[6] R. Doriguzzi Corin, M. Gerola, R. Riggio, F. De Pellegrini, and
E. Salvadori. Vertigo: Network virtualization and beyond. In Software
Defined Networking (EWSDN), 2012 European Workshop on, pages 24–
29. IEEE, 2012.

[7] D. Drutskoy, E. Keller, and J. Rexford. Scalable network virtualization
in software-defined networks. IEEE Internet Computing, 17(2):20–27,
March 2013.

[8] N. Foster, A. Guha, M. Reitblatt, A. Story, M. J. Freedman, N. P. Katta,
C. Monsanto, J. Reich, J. Rexford, C. Schlesinger, et al. Languages
for software-defined networks. Communications Magazine, IEEE,
51(2):128–134, 2013.

[9] X. Jin, J. Gossels, J. Rexford, and D. Walker. Covisor: A compositional
hypervisor for software-defined networks. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation,
NSDI’15, pages 87–101, 2015.

[10] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the one big
switch abstraction in software-defined networks. In Proceedings of
the ninth ACM conference on Emerging networking experiments and
technologies, pages 13–24. ACM, 2013.

[11] Y. Kanizo, D. Hay, and I. Keslassy. Palette: Distributing tables in
software-defined networks. In INFOCOM, 2013 Proceedings IEEE,
pages 545–549, April 2013.

[12] N. Katta, O. Alipourfard, J. Rexford, and D. Walker. Infinite cacheflow
in software-defined networks. In Proceedings of the third workshop on
Hot topics in software defined networking, pages 175–180. ACM, 2014.

[13] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
Static checking for networks. In Presented as part of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12), pages 113–126, 2012.

[14] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane, P. Eugster,
et al. Exploiting order independence for scalable and expressive packet
classification. 2015.

[15] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, N. Gude, P. Ingram, et al. Network virtualization
in multi-tenant datacenters. In USENIX NSDI, 2014.

[16] H. Li, C. Hu, P. Zhang, and L. Xie. Modular sdn compiler design with
intermediate representation. In Proceedings of the 2016 conference on
ACM SIGCOMM 2016 Conference, pages 587–588. ACM, 2016.

[17] A. X. Liu and M. G. Gouda. Complete redundancy removal for packet
classifiers in tcams. Parallel and Distributed Systems, IEEE Transactions
on, 21(4):424–437, 2010.

[18] A. X. Liu, C. R. Meiners, and E. Torng. Tcam razor: A systematic
approach towards minimizing packet classifiers in tcams. IEEE/ACM
Transactions on Networking, 18(2):490–500, April 2010.

[19] C. R. Meiners, A. X. Liu, and E. Torng. Bit weaving: A non-
prefix approach to compressing packet classifiers in tcams. IEEE/ACM
Transactions on Networking (ToN), 20(2):488–500, 2012.

[20] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker, et al. Com-
posing software defined networks. In NSDI, pages 1–13, 2013.

[21] D. Mougouei, D. M. Powers, and A. Moeini. An integer programming
model for binary knapsack problem with value-related dependencies
among elements. arXiv preprint arXiv:1702.06662, 2017.

[22] A. Pananjady, V. K. Bagaria, and R. Vaze. The online disjoint set cover
problem and its applications. In 2015 IEEE Conference on Computer
Communications (INFOCOM), pages 1221–1229, April 2015.

[23] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang. Pga: Using graphs to express
and automatically reconcile network policies. In Proceedings of ACM
SIGCOMM, SIGCOMM ’15, pages 29–42, 2015.

[24] O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy. Exact worst case
tcam rule expansion. IEEE Transactions on Computers, 62(6):1127–
1140, June 2013.

[25] D. B. Shmoys and É. Tardos. An approximation algorithm for the
generalized assignment problem. Mathematical programming, 62(1-
3):461–474, 1993.

[26] G. Tariri. THE ASSIGNMENT PROBLEM WITH DEPENDENT COSTS.
PhD thesis, University of Louisville, 2013.

[27] D. E. Taylor and J. S. Turner. Classbench: A packet classification
benchmark. IEEE/ACM Transactions on Networking, 15(3):499–511,
June 2007.

[28] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak. Maple:
Simplifying sdn programming using algorithmic policies. In ACM
SIGCOMM Computer Communication Review, volume 43, pages 87–
98. ACM, 2013.

