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Abstract— Named data networking (NDN) enhances traditional
IP networking by supporting in-network content caching for
better bandwidth usage and location-independent data accesses
for multi-path forwarding. However, NDN also brings new
security challenges. For example, an adversary can arbitrarily
inject packets to NDN to poison content cache, or access content
packets without any restrictions. We propose capability-based
security enforcement architecture (CSEA), a capability-based
security enforcement architecture that enables data authenticity
in NDN in a distributed manner. CSEA leverages capabilities to
specify the access rights of forwarded packets. It allows NDN
routers to verify the authenticity of forwarded packets, and
throttles flooding-based DoS attacks from unsolicited packets.
We further develop a lightweight one-time signature scheme
for CSEA to ensure the timeliness of packets and support
efficient verification. We prototype CSEA on the open-source
CCNx platform, and evaluate CSEA via testbed and Planetlab
experiments. Our experimental results show that CSEA only
incurs around 4% of additional delays in retrieving data packets.

Index Terms— Security, capability, named data networking.

I. INTRODUCTION

AMED Data Networking (NDN) has been proposed to
Nreplace the “connection-based” model in traditional TP
networking with the “content-based” model. By identifying
data packets by names instead of locations, NDN enables
flexible in-network caching for improved bandwidth usage
and allows location-independent content access for multi-path
forwarding [14]. From a security perspective, the name-based
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transmission model of NDN does not reveal who requests data
packets and who hosts data, thereby improving privacy [9].

On the other hand, NDN also brings new security chal-
lenges. One key challenge is that authenticity of data packets
in NDN cannot be effectively verified by NDN routers since
the packets may be from anywhere in the networks [11].
Therefore, an adversary can easily inject faked data packets
or replay data packets, so as to poison content cache in NDN
networks. In particular, cache poisoning can lead to denial of
service (DoS)' [11]. Also, it is non-trivial to detect and throttle
DoS attacks due to the flooding of fake data request packets
in NDN. Our key observation is that NDN routers do not
have any information about which content providers or users
produce data packets. Therefore, NDN routers cannot readily
decide if the packets in networks are malicious, although they
parse the semantics of packets during packet forwarding.

This paper aims to fill the void in NDN by
developing a security enforcement architecture based on
capabilities [15], [23]. A capability serves like a “ticket”
that specifies an access right to a data packet. Thus, we can
enforce different security policies by embedding capabilities in
packets. We can reject any unsolicited packet without a correct
capability, thereby preventing potential DoS attacks triggered
by fake or replayed packets. The use of capabilities also
enables us to enforce security policies in a distributed manner,
such that all NDN routers can verify the authenticity of any
forwarded packet. While capabilities have been extensively
studied in IP networks (e.g., [3], [4], [17], [18], [22]) for
DoS/DDoS defense, deploying capabilities in NDN needs a
fundamentally different design, mainly because of the unique
in-network caching feature of NDN and any new attack that
exploits this feature (e.g., the cache poisoning attack).

In this paper, we propose CSEA, a distributed capability-
based security enforcement architecture tailored for NDN.
We leverage existing security mechanisms in NDN with
minimal extensions to implement and deploy a new capa-
bility mechanism. Specifically, we observe that the current
NDN design requires mandatory digital signatures for all data
packets, which we can leverage to verify the integrity and
authenticity of the data packets by routers and end users [9].
By verifying the signature fields of data packets, all NDN
routers and end users can verify if the data packets remain
intact. We use this signature field to embed data packet

"For simplicity, faked data injection and cache poisoning are collectively
called data poisoning attacks in the rest of the paper.
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Fig. 1. Content delivery in NDN. (a) Sample topology. (b) The basic service
flow in the NDN network.

capabilities that include the packet digest and the access right
associated with a packet.

We further develop a lightweight one-time signature scheme
based on the Merkle Hash Tree [20], [31] for CSEA. The
one-time signature scheme utilizes standard hash functions to
enable CSEA to quickly produce and verify data capabili-
ties, which addresses the heavyweight problem in traditional
public-key digital signature algorithms (e.g., RSA). CSEA
generates, via hash functions, dynamic secrets, so as to guar-
antee the timeliness of packets and enable efficient verification
of content authenticity. In particular, compared with the one-
time signature scheme [20], [31] in the literature, our scheme
significantly reduces the communication overheads.

To summarize, the contributions of this paper are three-fold:

o We propose CSEA, a capability-based security enforce-
ment architecture that enables the verification of content
authenticity in a distributed manner. CSEA can also
throttle flooding-based DoS attacks.

o We develop a lightweight one-time signature scheme to
ensure timeliness of packets and enable efficient verifica-
tion of content authenticity.

e We implement our CSEA architecture on the CCNx
platform, and evaluate its performance with testbed and
Planetlab deployment. Our experimental results show
that the overhead introduced by CSEA is negligible. In
particular, CSEA only incurs around 4% delays in data
packet retrieval.

II. NDN AND THREATS
A. NDN Overview

Named Data Networking (NDN) [14] is a content-based net-
work architecture that delivers packets referenced by location-
independent content names, as opposed to packet addresses
as in traditional IP networks. NDN interconnects users (i.e.,
entities that request contents) and content providers (CPs) (i.e.,
entities that originate contents) through a set of content routers
(or routers for short). It also supports in-network caching, such
that content may be available at a CP or cached in the routers.

Figure 1 shows the basic workflow of an NDN network.
To request specific content, a user issues an inferest packet,
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which is propagated along the routers to the CP that holds the
content. The CP then returns the content to the user in data
packets. With in-network caching, if a router has cached the
requested content, it stops forwarding the interest packet and
directly returns the content to the user. Each router also keeps
forwarded data packets in its local cache for later use.

Each router keeps two data structures for packet forwarding:
forwarding information base (FIB) and pending interest table
(PIT). The FIB keeps a list of outgoing interfaces available in
the router, while the PIT keeps the incoming interfaces of the
received interest packets to allow data packets to be returned.

We assume that if both users and routers are benign, they
follow the same NDN protocol for communications. We do
not distinguish them and collectively call them nodes in the
following discussion.

B. NDN Threats

NDN offers distinct security and privacy advantages over
traditional IP network architectures through name-based trans-
mission [9], [14]. On the other hand, NDN is vulnerable to
unsolicited packets (including interest and data packets), such
that adversaries can inject junk packets or replay outdated
packets in order to disrupt the content delivery and in-network
caching mechanisms of NDN. In this paper, we focus on three
specific attacks as a result of the unsolicited packets.

Content Poisoning Attacks: An adversary can inject fake
content to poison an NDN system. For example, an adversary
can parse interest packets and inject fake content whose
names match those of the interest packets. In particular, it can
compromise a router and put the fake content in the local cache
in advance, so that the fake content can be directly returned
to the user.

DoS Attacks: An adversary can launch denial-of-
service (DoS) attacks by flooding interest or data packets
against the components of routers, such as the PIT and
the local cache [14]. This denies the attacked routers from
processing legitimate packets.

Content Leakage Attacks: Routers can cache data packets
that are forwarded, and return the cached data packets directly
to any router or user without restrictions. Thus, an adversary
can retrieve content from upstream routers by sending or
replaying unsolicited interest packets, even though it is not
authorized to access the content.

C. Security Goals

To defend against the threats above, we aim for the follow-
ing security goals:
o Integrity: Each interest or data packet remains intact.
o Authenticity: The content carried in each data packet
indeed originates from the claimed CP.
o Authorization: A user who issues an interest packet is
authorized to access the requested content.
o Timeliness: Each interest or data packet is not delayed
and replayed by any malicious router.
Each user or router can verify and dismiss any received
packet that violates any of the above security goals. Here, we
do not consider the attacks that violate content confidentiality,
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which can be readily enforced through encryption [9]. We also
do not address the blackhole attacks sine NDN is internally
resilient to them [28].

To make our discussion simpler, in this paper, we assume
that each piece of content is delivered by a single data packet.
We can also extend the methodology to deliver a piece of
content in multiple packets (e.g., when the content size exceeds
the maximum transmission unit (MTU) size), in which case
each data packet includes an individual signature field.

III. CSEA OVERVIEW

In this section, we present a design overview of CSEA,
a distributed capability-based security enforcement architec-
ture for NDN.

A. Capabilities

CSEA associates each piece of content in NDN with a
capability, which can be viewed as a ticket that specifies the
access right of the content. In CSEA, capabilities serve two key
purposes. First, capabilities enable a CP to authorize content
under an access right, similar to the use of capabilities in
classical computing systems [13], [23]. In addition, capabilities
control the permission of how users access content, following
the spirit of DoS-limiting networks [27].

In CSEA, a capability comprises two components: a content
signature and a token. The content signature is the crypto-
graphic digest of the content for ensuring the integrity and
authenticity of the content, while the token encodes the access
right of the content.

A token not only indicates the access right of the content,
but also enables a user to subsequently access additional
content of the same access right from the same CP. In other
words, a token is CP unique, and can be only access a
set of contents from the same CP. Any content will invalid
tokens, e.g., faked or expired tokens, will not be verified and
forwarded. In the meanwhile, a CP can embed a capability in
the data packet that is to be returned to a user, meaning that
the data packet is protected by the specified access right in the
capability. When a router or the user receives the data packet,
it checks the correctness of the capability. If the capability is
valid, the data packet can be either forwarded (for a router)
or delivered (for the user).

In addition, when a user receives the data packet, it can
extract the token from the received capability and embed the
token in an interest packet for accessing additional content
from the same CP under the same access right. A router or
the CP can verify the token with the one that it has previously
observed. If the token is valid, then the user is authorized
to access the content, and the interest packet will be either
forwarded (for a router) or processed by the CP. Here, we
assume that at the beginning, a user retrieves an initial token
from a CP through registration. A user does not need to
explicitly retrieve and update tokens. Instead, tokens will be
automatically updated once the contents are retrieved from the
content provider and verified.

Note that tokens and capabilities can be used to verify each
other in each NDN node. The node will drop any invalid tokens
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Fig. 2. Capability-based security enforcement architecture (CSEA).

or capabilities that cannot be successfully verified. Therefore,
it is not possible to construct capability forgery attacks.

B. CSEA Architecture

Figure 2 depicts the architecture of CSEA and how it is
integrated into the existing NDN design. Each CP includes a
capability generator, which generates capabilities for outgoing
data packets. Each router includes a capability verifier, which
verifies the correctness of capabilities from CPs and tokens
from users, and an access control point (ACP), which enforces
access control policies and decides whether an interest or
data packet should be forwarded or dropped based on the
verification results of the capability verifier. The ACP also
caches received tokens that are deemed valid, and uses them
to verify the subsequently received capabilities and tokens.
Moreover, it counts and limits the times of valid tokens that
are used to request different data packets so as to prevent
interesting flooding with valid tokens.

C. Open Issues

By verifying capabilities, CSEA ensures integrity and
authenticity of data packets, thereby achieving data access
authorization. On the other hand, traditional public key sig-
nature schemes, such as RSA and DSA, are heavyweight and
cannot ensure timeliness of packets [11], and thus cannot be
used for our capability generation and verification. To this end,
our CSEA design aims to address the following two issues:

a) Lightweight capability management: Given that
routers typically have limited resources, CSEA should intro-
duce a small computation and communication overhead of
capability generation and verification, such that it will not
significantly degrade the data forwarding performance of an
NDN system.

b) Freshness of tokens: In CSEA, users use tokens to
access authorized content, while routers use tokens for verifi-
cation and access control. Thus, CSEA should support efficient
token revocation and refreshment, so as to avoid the replay of
tokens.

IV. LIGHTWEIGHT CAPABILITY MANAGEMENT

In this section, we present the design details of
how CSEA achieves lightweight capability generation and
verification, inspired by the one-time signature (OTS)
algorithm [16], [20], [31].
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A. Bootstrapping

Before accessing content from a CP, a user needs to first
obtain an initial token from the CP through a secure channel
(e.g., by leveraging a secure content dissemination scheme
designed for ICN [26]). Specifically, the CP first constructs a
secret key vector x = (x1,22,- - ,x;), where x; (1 <1i <)
denotes a secret random number and [ is the length of x.
Here, [ is a configurable parameter that determines the size
of the corresponding capability (see Section IV-C). It then
generates a token ¢ = A(f(h(z1))||f(h(a2))]| - || F(h(x))).
where h(.) is a cryptographic hash function used for token
generation, f(.) is a truncation function that extracts the lower
[-bits of the input hash value, and || is the concatenation
operator. The CP then returns ¢ to the user through the secure
channel.

Each initial token is associated with an access right. If the
user accesses content of a different access right from the same
or a different CP, it needs to obtain another initial token. For
brevity, the following discussion assumes that all requested
contents have the same access right.

B. Requesting Content With Tokens

To access content from a CP, a user issues to the CP an
interest packet that is embedded with the associated token t.
The interest packet traverses along a set of routers, each of
which will verify the embedded token ¢ with its own cached
tokens. Specifically, each router maintains two sets of cached
tokens: the request token set Iy and the response token set Tp,
which store the valid tokens embedded in an interest packet
and a data packet, respectively. If 7p is empty (right after the
bootstrapping stage) or ¢ matches one of the tokens in 7p (the
latter means that the same token has been correctly observed
in the last data packet), then ¢ is considered valid. The router
will store ¢ in 7o and forward the interest packet until the
interest packet reaches the CP or any router that caches the
content. Otherwise, if ¢ is invalid, the interest packet will be
dropped. 7 will be used to verify any returned capability
later, which we further discuss in Section IV-D.

If a router has already cached the requested data packet, it
verifies whether the token embedded in the interest packet has
already been stored in 7p. If so, the router directly returns the
requested data packet; otherwise, it drops the interest packet.
We discuss this operation in detail in Section IV-E. Moreover,
as we discussed above, 7p plays a key role in verifying
tokens. Normally, token verification with 7p does not pose
a problem of false negative since any token not in 7p will
be accurately dropped. However, the false positives of token
verification may impact the accuracy of interest verification
and further influence the accuracy of capability verification.
We will analyze the false positives of token verification with
Tp in Section V-C.

C. Capability Generation

CSEA utilizes the Merkle Hash Tree (MHT) algorithm
to efficient generate capabilities for various content packets.
When a CP receives an interest packet embedded with a correct

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

MHT(CIIt)=H(A3111A32) g=k(MHT(CIIt))
A31=H(A21IIA22) A32=H(A23I1A24)

[A21=H(A11 1A 2)]

{A22=H(A1 3IIA14)J {A23=H(A15IIA16)J [A24=H(A1 7IIA18)]

[ A1‘1=|’ J[M 2=‘H(C1)] [A1 3=}‘1(02)J [A1 4=‘H(CB)J [A15=‘H(C4)] [A16=‘H(CS)] [A17=}‘1(06)J[A18=‘H(C7)J
v J o) (o2 ) (e ) (o) [s) [C‘ej[c‘y]}

R
\_token_ i\ Content C ={C1, C2, C3, C4, C5, C6, C7}

Fig. 3. Computation of g with the MHT algorithm. Here, the content C' is
split to seven physical packets, i.e., C1,Ca2,--- ,C7. The MHT is formed by
the token ¢’ and the set of data packets.

token ¢ from a user, it generates a capability for the requested
content. First, it constructs a bit vector g, which will later be
used for capability generation. The bit vector g is formed by
the MHT algorithm [20] (see an example of how the MHT
is formed in Figure 3). Specifically, the CP generates a new
secret key vector x’ = (), 25, -+, ) and hence a new token
£ = B ()| ) - |1 (h(a}))), which is similar
to that in the bootstrapping stage (see Section IV-A). The
CP will split the content (denoted by C) into multiple parts
to efficiently compute its capability. Given the new token ¢’
and the multiple data parts of C' (see Figure 3), the CP
constructs a binary MHT, in which each leaf node is the
hash value of either the token ¢ or a data part, and each
non-leaf node is the hash value of the concatenation of the
hashes of the left and right child nodes. The CP then computes
l-bits value according to the hash value at the root to form
the bit vector g via the k(.) function. k(.) is a concatenation
function that concatenates the lower (I- UogglJ-l)-bits of the
input hash value with (|logs"|+1)-bits that count the number
of ‘1’ bits in the lower (I-|logs'|-1)-bits. By counting the
number of ‘1’ bits, k(.) effectively prevents an adversary from
constructing capabilities with g that is computed from fake
content [20], [31] and can be verified.

In CSEA, we use the MHT algorithm to reduce the delay
of capability generation. Our observation is that the same
content in NDN may be distributed to different users, each
with a different secret. Also, the same user may request
the same content at a later time, yet the capability may
expire and need to be updated. When CP reconstructs a new
capability, it simply needs to update the token, as well as
the corresponding leaf node and all non-leaf nodes along
the path to the root in the MHT (see the shaded nodes in
Figure 3). Here, the CP does not need to generate hashes
for the content again and thereby capability generation and
verification is faster than pure hash functions. Our evaluation
shows that using the MHT algorithm reduces the delay of
capability generation over 60% compared to using pure hash
functions on the token and the entire content (see Section VII).

Algorithm 1 shows the pseudo-code of the capability gen-
eration algorithm. The inputs include the requested content C,
the new token ¢/, and the original secret key vector x associ-
ated with the token ¢ embedded in the interest packet. First,
the algorithm computes the bit vector g = (g1, g2, - ,¢1) of
length [ through MHT as discussed above (step 1) according to
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C and t. It computes the signature (denoted by S) by checking
the j-th bit g; of g (where 1 < j <) as follows (see steps 2-
8). If g; = 0, then it sets s; = f(h(z;)) (step 4); otherwise
if g; = 1, it directly sets s; = x; (step 6). Finally, it returns
the signature S by concatenating all s;’s (step 9).

The CP then constructs a data packet that includes con-
tent C' and the capability, where the latter comprises two
components: the content signature S and the new token ¢’
(see Section III-A). It returns the data packet to the user
requesting the content.

Algorithm 1 Produce

Input: Data packet C, token ¢’, key vector X = {x1, xo, - - -,
Tn '}

Output: Capability(S, t');

1. g — E(MHT(C||t'));

2:for (j=1—1) do

3. if (g; = 0) then
4 55— f(h(zy));
5.  else

6 S5 < Ty}

7. end if

8: end for

9: S — syl|sal| -+ ||si;

D. Capability Verification

Capability verification is similar to capability genera-
tion. When a router receives a data packet, it verifies the
embedded capability based on its cached tokens in 7g
(see Section IV-B). Algorithm 2 shows the pseudo-code of
the capability verification algorithm. It first computes the bit
vector g with the MHT algorithm based on the received data
packet C' and the embedded token ¢’ (step 1). It then uses the
signature S to compute the verification tag V: if the j-th bit
of g (where 1 < j < I)is g; = 1, it sets v; = f(h(s;))
(step 4); otherwise if g; = 0 it sets v; = s; (step 6).
It concatenates all v;’s to obtain V' (step 9). Finally, the
algorithm returns true if V' exists in 7q (steps 10-14), or false
otherwise.

Also, the router caches both V' and t' in 7p if they are
not in 7p, so it can validate the token embedded in the next
interest packet (see Section IV-B). We provide more details
how 7p is used in the next subsection.

E. Caching Tokens From Data Packets

Recall that 7p is used to cache tokens received from data
packets. In addition to authenticating new interest packets
(see Section IV-B), we discuss more usage of 7p.

Freshness of Tokens: CSEA leverages 7p to ensure the
freshness of tokens by associating each token with a limited
valid time period, such that it can revoke any token from
Tp after the token has stayed in 7p for the time period.
If a received token does not exist in a router’s 7p, it means
that the token expires and will be dropped by the router
(see Section IV-B). Since any verified token embedded in
incoming data packets are stored in 7p (see Section IV-D),
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Algorithm 2 Verify

Input: Data packet C, capability (S = sy|[sa|| - ||s;, t1),
request token set 7¢;
Output: True: success; False: failure;

1: g «— E(MHT(C||th));
2: for (j =1—1) do

3: if (g; = 1) then

4: Vj — f(h(S])),
5. else

6: v — 853

7:  end if

8: end for

9

Vo= h(ui|[vz]] - - [Jvo);
10: if (V' € 7g) then

11:  return true;

12: else

13: return false;

14: end if

tokens in 7p are kept being refreshed through capability
verification.

Timeliness of Packets: CSEA verifies tokens via 7p, and
in turn ensures timeliness of both interest and data packets.
Specifically, if a router receives an interest packet whose
embedded token does not exist in 7p, it will drop the interest
packet to prevent the packet from retrieving any data packet.
Similarly, if a router receives an expired data packet, it can
verify that the embedded capability in the data packet does
not match any token in 7 (see Section IV-D), which contains
valid tokens that are verified by the tokens stored in 7p (see
Section IV-B), and the router will drop the data packet as well.
In short, CSEA will deny any interest packet with an expired
token or any data packet with an expired capability.

V. ANALYSIS
A. Security of CSEA Capability Scheme

CSEA leverages MHT to produce a token ¢ and signs data
packets with the signature scheme (¢, k), where ¢ is the gener-
ated token and A is a collision-resistant hash function. We can
obtain the following theorem and prove it by showing that
any polynomial time algorithm breaks the unforgeability of the
proposed signature scheme only with negligible probability in
the random oracle model [5], [16].

Theorem 1: Given a collision-resistant hash function h and
a token ¢, the proposed signature scheme (¢, k) in CSEA is
unforgeable.

Proof: Without the loss of generality, we assume that a
key vector generating a token is X = {z1,x2,...,2,} and the
generate token is t = A(f(h(z1))||f(h(z2))]| ... ||f(h(xn))),
and the adversary is intending to forge a signature scheme
corresponding to the key vector X.

Suppose that the adversary presents (C’,S’), where C is
the data packet, and S’ is the forged capability (or signature)
corresponding to C’. Given data packet C’ with the token ¢,
CSEA generates the signature S. Therefore, we are interested
in computing the probability that S = S’ given C’. In other
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words, the adversary makes the output of signature verification
true if and only if S = 5.

In order to achieve S = S’, the adversary has to construct
g that is used to produce S’ for €' and compute s; = s
given the constructed g. The probability of generating g’ =
g is 2—1, where [ is the length of g. Even if the adversary
successfully constructs g’ = g, the adversary has to construct
s; = s} for each g;. For those g; = 0, the adversary has
to correctly compute s’ = f(h(z;)), where z; is unknown
to the adversary. Hence, the probability of generating output

s = f(h(z;)) by adversary is 5 where h is modeled as a

r;ndom oracle. In addition, for g; where g’ = 1, the adversary
has to correctly compute s’ = x;, where x; is unknown to
the adversary. Therefore, the probability of generating output
s =j is ﬁ Since || > [, the probability of generating
output S’ = S by the adversary for constructed g’ is less then
(5r)". Therefore, we can obtain that the overall probability of
generating S’ = S is less than ()"

Therefore, we can conclude that (&) is negligible,
where [ = 32. Therefore, the probability of breaking the
unforgeability of the signature scheme by the adversary is

negligible. [ ]

B. CSEA Security Properties

In this section, we briefly analyze the security properties
achieved by CSEA and discuss how CSEA counters sophisti-
cate attacks.

Data Poisoning Attacks: Each data packet piggybacks a
capability (S, ¢’) such that each NDN node can verify the
data by verifying (S, ') and tokens in valid token array 7p.
Any fake or malicious data packets cannot be verified and will
be dropped.

DoS Attacks: Routers can leverage tokens cached in their
Tp to verify interest and data packets. Under DoS of flooding
data packets, only data packets with verified capabilities can
go through a network if they are requested by the users in the
network. Fake data packets, data packets with expired capa-
bilities, or any unsolicited data packets cannot be successfully
verified by routers so that they will be dropped. Hence, CSEA
can effectively throttle DoS attacks by flooding data packets.

Moreover, CSEA defends against DoS attacks by flooding
interest packets. Each router maintains 7p and verifies if an
incoming token ¢ is valid by comparing it with tokens in 7p.
Routers can infer which 7p can be used to verify tokens in the
interest packets according to the embedded hierarchy names
in the packets [14]. Therefore, under DoS attacks of flooding
interest packets, malicious routers cannot simply replay or fake
tokens to generate interest packets. Any packets with invalid
tokens will be dropped since they cannot match the records in
Tp. Therefore, CSEA can effectively mitigate DoS attacks by
flooding fake or expired packets. In addition, CSEA counts the
number of times that tokens are used to request data packets,
especially the data packet referring to non-existing content,
and then throttles the interest flooding attacks with valid tokens
by limiting the usage of the tokens. It can also defend against
the content flooding attacks that are constructed by flooding
interest packets with valid tokens. In order to successfully
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construct the attacks, the attackers need to collect various valid
tokens, which is difficult to achieve.

Note that, during network bootstrapping, routers may not be
able to detect the DoS attacks mounted by flooding interest
packets. At this stage, CPs have not sent out any data packets
to the network yet, and then the routers do not cache any
valid tokens in their 7p for token verification. Thus, malicious
interest packets may still be delivered by the routers. The worst
case here is that the malicious packets will arrive in the CP
and the CP drops them. However, the malicious packets will
be dropped once the data packets are produced and propagated
in the network. To efficiently defeat the attacks during network
bootstrapping, we can allow routers to cache the initial tokens
from CPs in their 7p during network bootstrapping.

Replay Attacks: Each router only maintains a set of valid
tokens within a period. Tokens are periodically refreshed in
the router even when the same data traverses it. Any replayed
interest and data packets cannot successfully go though it
because the embedded tokens or capabilities cannot be verified
with the refreshed tokens. In particular, a malicious node
cannot retrieve any data by replaying interest packets since
the embedded tokens cannot be verified. Moreover, since each
router counts and limits the times of valid tokens that are used
to request different data packets, the impact of replaying valid
tokens is limited. Therefore, CSEA can mitigate interest and
data replay attacks.

Content Leakage Attacks: CSEA verifies if token ¢ in request
token set 7 is authorized to access the data packet by
verifying ¢ with capability (S, ¢’) in the data packet. Any fake
token that can not be successfully verified will be dropped.
Hence, the data packet will not be leaked out to unauthorized
users without valid tokens. However, data packets may be still
leaked out by malicious nodes that do not comply with CSEA,
i.e., they do not verify tokens in 7 but directly return the data
packets to the requesters. However, the effect on the attacks is
very limited. Since the nodes along the path from the malicious
nodes to the destination nodes do not record interest packets
for the incoming data packets, they will drop the unwanted
packets. Any data packets will be dropped if there does not
exist any valid tokens 7g to request the data packet. The
attacks will succeed only when CSEA on all nodes along the
forwarding path is tampered with to opt in to collude. In this
scenario, data packets may be leaked by the malicious nodes.
Nevertheless, we believe that the scenario is very rare in real
practice.

C. Analysis of False Positives in Verifying Tokens

We also analyze the impact of the size of the token response
set 7p on false positives in verifying tokens (see Section IV-B).
Since 7p can only keep a finite number of tokens with limited
memory, a valid token will be falsely dropped and cannot be
authorized to retrieve data packets if the token does not match
any record in 7p, which raises false positives in verifying
tokens. In the following analysis, for simplicity, we consider
the case where there are m users connected to one router R
and users request a set of content, i.e., C', from the same CP.
However, the analysis results can be applied to the scenarios
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where content is from multiple CPs and users are connected
with different routers. In CSEA, after a user retrieves a data
packet, the token will be updated in the routers delivering
the packets. The size of 7p is set to n, which means that R
can hold up to n tokens for C. Initially, the token set 7p is
empty, and the oldest token is removed from the chain if 7p is
full. Here, we assume users are independent in requesting C,
and, for each user, the inter-arrival time of interest packets is
memoryless. Thus, the arrival of interest packets from user u;
follows a Poisson process. Let the arrival rate of the interest
packet from user u; be A;.

Now we consider the instant when u; gets data after issuing
an interest packet. According to the design of CSEA, u; would
also obtain a token, ¢. Suppose that u; would issue the next
interest after a period of 7. Let N\;(7) be the interests issued
by the other m — 1 users. If Ny;(7) < n, then the token ¢
would be removed from the tail of 7p, and the interest packet
issued by u; would be treated as “malicious” one and dropped
falsely. Here, we aim at analyze this false positive rate Py,.

Let T; be the inter-arrival time of w;’s interests, then Py,
can be calculated as:

0

As the other m — 1 users are independent, N\;(7) follows a
compound Poisson process with parameter A = i Aj- Let
S,, be the time when the n-th interest arrives from the m — 1
users, we can obtain that:

Pr{N\;(1) > n} = Pr{S, <1}
n—1
/ rere QD

(n—1)!
_ g (T2)"7!
7/0 Te (n—l)!dm 2)

Thus, we can compute the false positive rate as:

prf/ / J#‘J —“((m) mpdehe e @)

= ( Z A
Based on the above analysis, we can conclude that the false
positive rate drops exponentially with the increase in n, i.e.,
the size of 7p.

) “)

D. Discussion

Effectiveness of Replay Defense: CSEA significantly
increases the cost of launching the replay attacks by limiting
the validity time of capabilities, and hence mitigates the replay
attacks. However, a shorter expiration time will incur a side
effect of increasing the communication overhead. We have
analyzed false positives of packet verification by a short
expiration time in Section V-C. We show that the false positive
rate drops exponentially with the increase in the size of the
response token set 7p. Actually, the side effect of the false
positive rate is also impacted by other factors, e.g., content
cache expiration time and network topologies. We pose the
theoretic analysis on the side effect as future work.
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Collusion Attacks: In this paper, we assume that content
producers are benign. Actually, we cannot easily infer if a
content provider produces bogus data. The problem is similar
to the current Internet. In order to address this issue, we can
leverage trust schemas [30] in NDN to link CP’s authentication
keys and trust rules for their content.

Deployment on Other ICN Designs: CSEA can be applied to
other ICN architectures similar to that presented in this paper.
We can achieve the goal by piggybacking tokens in content
request packets and capabilities in data packets. Any router
can verify tokens and capabilities to ensure the security of the
ICN architecture.

VI. IMPLEMENTATION

We implement CSEA with thousands LOC in the NDN
prototype called CCNx [1] that is developed by Xerox PARC.
CCNx provides a daemon program called ccnd including
Content Store, PIT, and FIB. The daemon forwards interest
packets according to FIB, and deliveries contents according
to the entries in PIT, and stores content in Content Store.
(see Figure 4). Also, CCNx can be set up as a client to
deliver requested data packets to user applications. CCNx
prototype will cache all data packets it delivered. CSEA
introduces an extension to NDN such that NDN has abilities
to defend against different attacks discussed in Section II:
(i) CSEA reuses digital signature fields of data packet to
piggyback capabilities and extend interest packets to embed
tokens. (ii)) CSEA verifies each packet before the packet is
delivered to the ccnd daemon.

Figure 4 shows interest and data processing procedures in
the CSEA prototype. The ACP module in CSEA plays a key
role in enforcing capability-based policies on all interfaces.
As we discussed in Section IV-D, in order to accurately
enforce the policies in ACP, CSEA also includes the capability
verifier to engage in verifying user tokens and data capabilities.
The capability verifier verifies tokens in interest packets that
requests cached data packets (see Figure 4(a)), and verifies
tokens and capabilities (see Figure 4(b)) upon incoming data
packets.
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When an interest packet arrives, ACP will verify the token
embedded in the interest packet and check if the token matches
a record in 7p that is stored in ACP (see Figure 4(a)). ACP
forwards the interest packet to the ccnd daemon if the token is
verified (see arrow (1)). Meanwhile, it will forward the token
to the capability verifier as well and is stored in 7g in the
capability verifier (see arrow (2)). Later the capability verifier
can verify the validity of the stored tokens when the requested
data packet is received. If the requested data packet is already
cached, ACP will directly decide if the stored tokens in ACP
are allowed to retrieve the data packet (see arrow (3)). If the
node does not cache the data packets or does not receive the
interest packet before, ACP will allow the interest packet to
be further propagated (see arrow (7)).

Upon receiving a data packet, as shown in Figure 4(b), ACP
will forward the capability to the capability verifier for data
verification (see arrow (1)). The capability verifier will return
the valid tokens to ACP according to the token in 7g after
successful data verification (see arrow (2)), and the returned
tokens will be used for verification of new incoming interest
packets. ACP will drop the data packet if the set of returned
tokens is empty, which means that the received data packet
does not include correct capability or the tokens requesting
the data packet is not authorized to retrieve the data packet
(see arrow (3)). In this setting, ACP can accurately authorize
different interests to retrieve the data packet according to the
valid tokens. In the meanwhile, the verified data packet will
delivered to the ccnd deamon (see arrow (4)). For outgoing
data packets, ACP will allow the packets to be delivered to an
interface if and only if its ACP has a record associated with
the interest packet sent from the interface (see arrow (6)).

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance and overhead
of CSEA. We focus on the experimental data of the CSEA
prototype with microbenchmark and macrobenchmark exper-
iments. We deploy the prototype in a small-scale testbed and
Planetlab, which aims to demonstrate that CSEA incurs small
computation and communication overheads while enhancing
the security of NDN. The hash function used in CSEA is
SHA-256. Note that, CSEA can produce a capability for a
data packet that is splitted into more than one physical packets
before it is delivered into the network. In the experiments, we
set the sizes of data packets between 100 bytes and 8K bytes?
The packets will segment when the packet sizes are larger than
1.5K bytes.

A. Performance in Testbed Deployment

In the testbed experiments, we study different performance
aspects of CSEA with different parameters. Our CSEA testbed
is a line topology composed of three nodes deployed on an
Intel Core i5 3470 machine with 3.2 GHz that runs Linux.

2 As suggested in the NDN design [14], content will be split into different
smaller-size packets (called trunks). Therefore, NDN will not generate large
packets. Actually, according to our experiment results, our scheme will not
introduce significant overhead in packet delivery even if there are packets
more than 8K bytes. For simplicity, we only present the experiment results
with content less than 8K bytes.
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Experiment 1 (Token Generation Delay): In this experiment,
we evaluate token generation delays with different sizes of
secrets. With different sizes of secrets, f(.) extracts the
equivalent length of bits from the generated hash values to
generate tokens. We generate tokens with different sizes of
secrets five times and measure the average delays. As shown
in Figure 5, we observe that the token generation delays
increase with the increase in the size of secrets since the
number of hash function operations increase. The maximum
delay with 128 secrets is around 250 ps. The difference
between token generation delays with different secret sizes is
bounded by 150 us. Overall, the delay increase around 17%
when the size of secrets increase 16. Note that, if we choose
a larger size of secrets to generate tokens, it will increase
the communication overhead because the sizes of capabilities
embedded in data packets is decied by the size of the secrets
(see Section IV-C). Therefore, in the rest experiments, we will
set the size of secrets to 32.

Experiment 2 (Capability Generation and Verification
Delay): We now evaluate the capability generation and
verification delays with different sizes of data packets.
As shown in the capability generation and verification algo-
rithms (see Section IV-C and IV-D), g plays a key role
in capability generation and verification. We firstly evaluate
and compare the delays of big vector g generation with
different packet sizes. Figure 6 depicts the experiment results.
We observe that, compared with pure hash functions, the
delays of generating the bit vector with incremental MHT con-
struction (or “MHT-part” in short) are significantly reduced by
more than 60%, though full MHT construction (or “MHT-full”
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in short) introduces more delays than pure hash functions
(or “MAC” in short). In particular, the MHT-part approach
incurs only around 32.5 us to generate g for 8K bytes content,
while the MAC approach takes more than 175 ps. The reason
is that as opposed to MAC that operates on long messages,
MHT operates on a small number of shorter messages with
less computation overhead and hence incurs shorter delays.
Therefore, it is more efficient to produce and verify capabilities
with MHT in NDN.

We secondly evaluate the delays of capability generation
and verification. Figure 7 illustrates experiment results. It is
not surprising that capability generation delays increase with
the increase in packet sizes since the times of hash function
operations increase when packet sizes increase. The average
capability generation delays are around 0.076 ms, and the
average capability verification time is about 0.084 ms. Since
the token generation delays are really small, if the capability
generation procedure includes the token generation proce-
dures, we can observe that the overall capability delays are
still small and the value is around 0.091 ms. The delays are
still acceptable though they includes around 15% more delays.

Moreover, we measure and compare the delays of capability
verification and token updates. As shown in Figure 8, token
updates incur only less than 8% of additional forwarding
delays, while capability verification incurs only less than 1%
of additional forwarding delays. Therefore, the cost of token
updates is acceptable for content verification and content
access control. We conjecture that the overall delays can be
further significantly reduced if we can leverage hardware to
implement hash functions.
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Experiment 3 (New Data Packet Retrieval Delay): We now
compare the delays to retrieve new data packets among three
nodes (see Figure 9). New data packets mean that a user
retrieve data packets from CPs, and the intermediate nodes
did not deliver the request data packets before, which means
that they do not cache the data. We can observe that the delays
incurred by CSEA are really small. To verify capabilities with
100 bytes data packets, the packet retrieval delays with and
without CSEA are 13.8 ms and 13.7 ms. Similarly, the delays
to verify capabilities with 8K bytes data packets are around
15.3 ms and 16.7 ms. With different data packet sizes, the
average packet retrieval delays are 10.5 ms and 11.1 ms,
respectively. Averagely, CSEA introduces only 0.6 ms delays
to retrieve new data packets compared with the naive NDN
prototype. The increase rate of data packet retrieval delays is
about 0.05%. Based on the observations, we can conclude that
NDN introduces negligible overhead for a user to retrieve new
data packets from CPs.

Experiment 4 (Cached Data Packet Retrieval Delay): In
this experiment, we evaluate the delays to retrieve cached
data packets. By caching data packets, the node requesting
data packets can directly obtain the data packets from the
intermediate nodes. Figure 10 shows the retrieval delays
of cached data packets. The packet retrieval delays are
around 0.6 ms. CSEA introduces relatively constant packet
processing delays that are around 1.5 ms. Compared to the
delays of retrieving new data packets, CSEA incurs relatively
more delays in retrieving data packets and introduces around
0.1% delays. By retrieving cached data packets, the delays
both with and without CSEA are significantly reduced,
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and the average reduction rates are around 96% and 86%,
respectively. We observe that the overhead is still small and
acceptable. Moreover, in the current prototype, we implement
an array to cache different tokens in ACP and the capability
verifier. The performance would be significantly improved if
the token cache is implemented with hash tables, e.g., bloom
filters. We leave an enhanced implementation of CSEA to
future work.

Experiment 5 (Communication Overhead): We now evaluate
the communication overhead incurred by CSEA. Since CSEA
will piggyback tokens in interest packets and capabilities
in data packets, it will increase the size of NDN packets.
Figure 11 illustrates the communication overheads with differ-
ent data packet sizes. We compare the packet size increase rate
with native NDN and CSEA. As we discussed in Section III,
each capabilities comprises a data signature and a token. In this
experiment, for simplicity, we only evaluate the overhead
incurred by piggybacking capabilities in data packets. For
small packets, for example, both NDN and CSEA incur more
than 2 times of the original data packet sizes. However, with
the increase in packets size, the increase rate of packet sizes
is significantly reduced. In average, NDN introduces extra
16% packet size to piggyback data signature, and the packet
sizes with CSEA increase 22%. Therefore, CSEA only slightly
increases the NDN packet sizes.

B. Performance in Planetlab Deployment

To evaluate CSEA in real production networks, we deploy
the CSEA prototype on Planetlab. We deploy CSEA on ten
Planetlab nodes across three continents, i.e., America, Asia,
and Europe. For simplicity, we only measure the packet
retrieval delays between three node pairs in the same con-
tinents. These nodes can reach each other directly, by one
intermediate node in the other continent, or by two intermedi-
ate nodes in the other continent. Therefore, the paths between
these node pairs are evaluated with different hop numbers, i.e.,
one, two, and three hops.

Experiment 6 (Data Packet Retrieval Delay in Planetlab):
In this experiment, we measure the delays to retrieve data
across different paths on Planetlab. Figure 12 shows the data
packet retrieval delays with CSEA versus that with native
NDN. We do not observe any significant delays incurred
by CSEA. The packet retrieval delays between two direct
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different continents.

neighbors with CSEA are almost the same to that without
CSEA. The data packet retrieval delays across one intermedi-
ate node with and without CSEA are around 0.64 seconds and
0.66 seconds, respectively, and the increase rate is bounded
by 0.03%. If the data retrieval paths include two intermediate
nodes across different continents, the paths between America
and Europe across Asia incur the smallest delays to retrieve
data packets. The delays with different paths across Asia,
America, and Europe, averagely increase 1%, 4%, and 6%,
respectively. Note that, if data retrieval paths are more than
two hops, the data packets may be retrieved from CP nodes
or intermediate nodes caching the data. These results illustrate
that CSEA introduces stable delays in retrieving data packets.
On average, it only introduces 0.02 seconds delays to retrieve
a packet. Compared with native NDN, the average increase
rate of packet retrieval delays are around 4%. We believe that
the packet processing overheads incurred by CSEA will be
negligible if it is deployed with large-scale deployments on
the Internet.

VIII. RELATED WORK

Capability-based systems have been extensively studied
in the literature [3], [4], [15], [17], [18], [22], [23]. For
example, Shapiro er al. [23] develop a capability system
to enforce resource access control within operating systems.
Anderson et al. [3] propose to defend against DoS attacks
in IP networks by issuing capabilities for packet sources.
In contrast, CSEA targets an NDN system and aims to achieve
both data access control and DoS defense through capabilities.

Access control enforcement schemes have been proposed
for Information Centric Networking (ICN) (of which NDN
is an instance). Fotiou et al. [10] propose a centralized access
control architecture for ICN, in which access control providers
issue credentials for data requests. Li et al. [16] propose
LIVE, a centralized access control enforcement scheme for
NDN. While LIVE also leverages Merkle Hash Trees as
CSEA for lightweight data verification, * the fundamental
difference between LIVE and CSEA is that LIVE enforces
access control policies in a centralized manner, while CSEA

3 Actually, the LIVE verification algorithm is vulnerable to the guessing
attacks that adversaries can construct verifiable capabilities with g that is
computed from fake content.



LI et al.: CAPABILITY-BASED SECURITY ENFORCEMENT IN NDN

allows distributed access control. LIVE requires CPs to man-
age token distribution for access control, and hence routers and
users require frequent interactions with CPs to obtain tokens.
In contrast, CSEA distributes the load of data verification
among NDN routers. Also, CSEA effectively throttles DoS
attacks, which are not considered by LIVE.

DoS/DDoS countermeasures have been considered in
NDN [8], [11]. They mitigate DoS attacks by identify-
ing and suppressing malicious traffic. In contrast, CSEA
can detect malicious traffic by identify invalid embedded
tokens or capabilities, similar to the capability approaches in
IP networks [3], [4], [17], [18], [22], [27].

Recently, encryption is used for data protection in
ICN [6], [9], [19], [21], [24], [25], [27]. For instance,
DiBenedetto et al. [9] leverage onion routing to ensure
anonymity of NDN. Nabeel et al. apply homomorphic cryp-
tography to support data lookup over encrypted packets in
publish-subscribe networks [21]. CSEA is orthogonal to these
application layer encryption approaches, and focuses on dis-
tributed access control in the network layer.

Network-layer trust in NDN [12] and unpredictable
names [2], [7] are mostly related to our proposed CSEA. The
network-layer trust approach [12] uses one hash function in
each node to verify CPs (more precisely, it verifies CPs’ public
keys) and content, so as to build trust among CPs, routers, and
users. Similar to CSEA, it incurs small computation overhead
to verify content. However, it does not consider DoS attacks
and content leakage attacks that are addressed in CSEA.
Our current CSEA design is similar to the approaches with
unpredictable names [2], [7] that aim to defend against the
content poisoning attacks. To completely prevent the attacks
that sniff and replay interest packets, we can extend the scheme
and encrypt the tokens in interest packets, at the expense of
incurring higher packet delivery overheads.

IX. CONCLUSION

In this paper, we propose CSEA to enforce security
policies in NDN such that it can throttle different attacks
in NDN, i.e., content poisoning attacks, DoS attacks, and
content leakage attacks. Specially, we leverage lightweight
hash algorithms to implement a capability system within
CSEA. We implement the CSEA prototype upon the CCNx
platform, and demonstrate the benefits of CSEA with testbed
and Planetlab experiments. The experimental results show
that CSEA introduces negligible overhead in retrieving data
packets in NDN.
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