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Abstract—A crucial requirement for Software Defined Network
(SDN) is that data plane forwarding behaviors should always
agree with control plane policies. Such requirement cannot be
met when there are forwarding anomalies, where packets deviate
from the paths specified by the controller. Most anomaly detection
methods for SDN install dedicated rules to collect statistics of
each flow, and check whether the statistics conform to the flow
conservation principle. Such per-flow detection methods have a
limited detection scope: they look at one flow each time, thus
can only check a limited number of flows simultaneously. In
addition, dedicated rules for statistics collection can impose a
large overhead on flow tables of SDN switches. To this end, this
paper presents FOCES, a network-wide forwarding anomaly de-
tection method in SDN. Different from previous methods, FOCES
applies a new kind of flow conservation principle at network
wide, and can check forwarding behaviors of all flows in the
network simultaneously, without installing any dedicated rules.
Experiments show FOCES can achieve a detection precision
higher than 90% for four network topologies, even when packet
loss rates are as high as 10%.

Index Terms—Software defined networks, Forwarding anoma-
ly, Equation system

I. INTRODUCTION

Software defined network (SDN) promises a centralized,
flexible, and programmable control of computer networks [1].
However, despite these benefits, SDN is still vulnerable to
attacks. First, the operating systems (OSes) of SDN switches
can be compromised [2]–[4]. A recent study shows that an
attacker can hack the boot loader of switch OSes, so as to
gain persistent control over SDN switches [2]. Second, the
control channels between the controller and switches also lack
security protection. Even OpenFlow recommends the usage of
SSL/TLS, most SDN switch vendors just forgo this feature [5].

The above security vulnerabilities manifest at the data plane
as forwarding anomalies, i.e., packets deviate from the paths
that are specified by the controller. Forwarding anomalies can
cause violation of critical security policy, like flow isolation
and waypoint traversal. For example, the control plane policy
may require a specific flow go through a firewall, and for-
warding anomaly can cause all packets of this flow bypass
the firewall. Note that SDN by itself provides no means to
detect forwarding anomaly: the controller only installs rules at
switches, but cannot ensure the rules are correctly translated
to forwarding behaviors.

Recently, many data plane debugging tools are proposed to
test whether flow rules at switches are corresponding to the

controller’s view [6]–[8], or monitor whether the forwarding
behaviors of packets are compliant with the control plane
policies [9], [10]. However, they assume switches are trustable,
thus cannot work when switches are compromised.

To work in adversarial setting, path verification tools let
switches along the forwarding path embed some cryptographic
information (e.g., MAC) so that the controller can verify
whether the actual path took by packets are agreeing with
what the controller expects [11]–[13]. However, they need
extra header space for storing the MACs, therefore introducing
high bandwidth overhead. In addition, they need to modify
switches to support cryptographic operations, which further
increases the deployment cost.

Statistics verification tools try to detect forwarding anoma-
lies by passively collecting and analyzing flow statistics [14]–
[16]. These tools rely on the flow conservation principle, which
has previously been used to detect compromised routers in
traditional networks [17], [18]. In contrast to path verification
tools, statistics verification tools do not require any extra
header space or switch modification, and thus can be easily
adopted by production networks. However, they look at flows
or switches individually, and cannot detect forwarding anoma-
lies at all switches simultaneously. In addition, they need to
install dedicated counter rules at switches for collecting flow
statistics, thus placing large overhead on flow table space.

To this end, this paper presents FlOw Counter Equation
System (FOCES), a new approach to forwarding anomaly
detection for SDN. Generally speaking, FOCES belongs to
statistics verification methods. However, different from all the
per-flow methods that apply the flow conservation principle
for each individual flow, FOCES works at a network-scale:
it takes all flows as a whole, and checks whether their
counters are consistent with the controller’s view. Specifically,
FOCES models the controller’s view (i.e., expected forwarding
behaviors) with Flow-Counter Matrix (FCM), which captures
the relationship between all flows and rules in the network.
Then, FOCES periodically collects the counters of all rules in
the network, and checks whether they can fit into what we call
the flow counter equation system determined by the FCM. In
this sense, FOCES generalizes the flow conservation principle
from a single switch to the whole network, and thus can detect
forwarding anomalies at the network-wide scale.

When designing FOCES, we are faced with the following
challenges. First, packet losses and out-of-sync counter values



may bring noises to FOCES, and cause it to falsely flag the
network under forwarding anomaly. We show how to eliminate
such false positives by designing a threshold-based detection
algorithm, and study how to choose the appropriate thresh-
old values both analytically and using experiments. Second,
FOCES needs to solve flow counter equation systems, which
requires computing matrix inversions. This can be costly when
there are a large number of flows and rules, To make FOCES
scalable, we propose a method by slicing the original large
FCM into many smaller sub-FCMs, whose matrix inversion
can be computed much faster.

In sum, our contribution is four-fold:
• We propose FOCES, a network-wide forwarding anomaly

detection method in SDN, which can check whether all
flows in a network are forwarded correctly simultaneous-
ly, without installing extra rules.

• We theoretically analyze the condition for successful
detection using FOCES, and reduce the condition to the
problem of finding a loop in a bipartite graph.

• We design a threshold-based detection algorithm to e-
liminate false positives caused by counter noises, and a
slicing-based method to make FOCES scalable for larger
networks.

• We use experiments to show FOCES can accurately
detect forwarding anomalies in four network topologies,
with minimal computation overhead.

The rest of this paper proceeds as follows. Section II
states the problem of forwarding anomaly in SDN; Section III
presents the theoretic framework of FOCES; Section IV shows
how to make FOCES work in realistic setting, by dealing with
noises and scalability issues; Section V analyzes the capability
of FOCES in detecting forwarding anomalies; and Section VI
evaluates the accuracy, performance, and overhead of FOCES;
Section VII discusses related work, and Section VIII con-
cludes.

II. PROBLEM STATEMENT

A. System Model

This paper considers a typical SDN, where a centralized
controller manages a set of switches. Network operators spec-
ify high-level policies such as reachability and isolation with
the API provided by the controller. The controller breaks down
the policies into a set of rules, and populates the rules into
flow tables of switches, through a standard control channel
like OpenFlow [1]. Each rule consists of three parts: matching
fields, actions, and counters. Switches forward packets by
looking up in the flow table. Specifically, when the header
of a packet matches the matching fields of a rule, the switch
will take the actions specified by the rule (e.g., forwarding to a
port), and update the corresponding counters. We assume the
controller has the complete network topology and can request
counters of rules from switches [19]. In addition to the above
proactive mode of rule installation, rules can also be installed
reactively when a new flow comes into the network without
any matching rules.
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Early drop

Path detour

Switch bypass

Path deviation

Fig. 1. Illustration of forwarding anomalies considered in this paper.

B. Threat Model

The adversary aims to change the paths that packets
should be forwarded, thereby causing what we call forwarding
anomaly. Specifically, we consider the following types of
forwarding anomalies, as shown in Fig. 1.

Path Deviation. Packets take a different path than what are
expected by the controller. Besides general path deviations,
here we highlight two special cases:

• Switch Bypass. Packets are received by the destination
switch, but one or more switches are skipped.

• Path Detour. Packets deviate from one switch Si to
another switch other than the intended next-hop Si+1,
and come back to Si later.

Early Drop. Packets are dropped before reaching the desti-
nation switch. Note here we implicitly assume the last-hop
switch is not compromised, as it can drop packets pretending
that packets are received by the end hosts.

Finally, we do not consider anomalies which do not change
the forwarding paths of packets, such as traffic mirroring or
payload modification, since they can be defended using end-
to-end encryptions.

We assume the adversary can compromise switches by
exploiting the vulnerabilities of switch OS. Then, the adversary
has the following two avenues to cause forwarding anomalies.
(1) The adversary can modify output ports of forwarding rules
installed at the flow tables of compromised switches. Here, we
assume the adversary has full control of compromised switch-
es. Thus, when the controller tries to dump the flow table of a
compromised switch, the adversary can just report the original
flow table instead of the modified one. Thus, simply dumping
flow tables is not effective. (2) The adversary can directly
forward any packets to any ports, without matching any rules
in the flow table, thereby also dismissing the method of flow
table dumping. In addition, we assume the adversary is aware
of our detection method, and can modify the counters of rules
at compromised switches, so as to pretend to have correctly
forwarded packets.

Finally, we assume the controller is always trusted, and the
majority of switches in the network are benign, i.e., forwarding
packets according to rules installed by the controller.

III. FOCES: THEORETICAL CONSTRUCTION

This section presents the theoretical construction of FlOw
Counter Equation System (FOCES), a network-wide forward-
ing anomaly detection algorithm for SDN. By network-wide,
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Fig. 2. An example illustrating the basic idea of FOCES.

we mean whenever a flow in the network is experiencing for-
warding anomaly, FOCES can immediately detect it through
analysis. We will first present the basic idea of FOCES,
followed by the theoretical construction. Then, we analyze the
condition for successful detection.

A. Basic Idea

Before introducing FOCES, we first show how previous
statistics verification methods can detect forwarding anomalies
by leveraging the “flow conservation” principle [17]. Taking
Fig. 1 as an example, suppose there is only one flow S0 →
S1 → S2 → S5 (shown as the green solid line), which matches
a rule at each switch of the path. Ideally the counters of rules at
S0, S1, S2, S5 should all be equal to say a, conforming to the
flow conservation principle. Now, suppose S1 is compromised
and diverts the flow to path S3 → S4 → S5 (shown as the red
dashed line), the counters at S0 and S1 will still be a, while
the counter at S2 will be smaller than a, violating the flow
conservation principle.

Based on the above idea, previous works check whether the
counters of a flow conform to the flow conservation principle,
in both traditional networks [17], [18], and SDN [14]–[16].
However, applying the flow conservation principle for each
individual flow has two serious limitations.

• Limited Detection Scope. Since they look at one flow
each time, mostly they can only check a limited number
of flows (e.g., flows passing a specific switch, flows
destined to a specific IP address, etc.), instead of checking
all flows in the network simultaneously. As a result, they
may miss some forwarding anomalies happening to flows
that are not checked. For example, if we only check
flows passing S2 in Fig. 2, we may miss the forward-
ing anomaly for flows passing S4. Thus, applying the
anomaly detection algorithms on a per-flow or per-switch
basis, without any prior knowledge of where forwarding
anomalies happen, can result in a limited detection scope.

• High Flow Table Overhead. In real networks, each
forwarding rule may aggregate multiple flows. Thus, in
order to check whether a specific flow conforms to the
flow conservation principle, one cannot directly use the
counters of forwarding rules, but has to install dedicated
rules to collect the statistics of that flow. For example,
in Fig. 2, the rule at S2 matches two flows. To check
the flow in solid blue line, one cannot use the counter

of the forwarding rule at S2 which aggregate two flows.
A dedicated rule that solely matches the flow should be
installed. If we need to analyze all flows in the network,
these methods can impose large overhead for flow tables,
considering that the flow table size is generally small for
SDN switches.

The key idea of FOCES is to extend the flow conservation
principle from individual flows to a network of flows, by
considering the relationship between flows and rules. For
example, in Fig. 2, assume the three flows (in solid lines)
have volume a, b, and c, respectively. Then, the counters of
rules should satisfy the constraints listed in table. Suppose the
green flow of volume a is directed to S3 instead of S2, as
shown in red dashed line. Then, the right dashed box shows
the counter values observed by the controller. It is easy to
verify that whenever a, b, c are nonzero, the observed counter
values cannot satisfy the constraints. Note here we take the
counters of all flows in the network as a whole, and thereby
can detect forwarding anomaly at a network scale. In addition,
we directly use counters of aggregate rules, without installing
dedicated counter rules.

The Workflow of FOCES. Based on the above idea, FOCES
first extracts the constraints that all counters in the network
should satisfy, from the network configurations (e.g., flow
tables) in the control plane. Then, FOCES collects counters
from the data plane, and checks whether these counters satisfy
the constraints. If the constraints are violated, then there must
be some forwarding anomalies in the network.

In the remaining of this section, we will present the con-
struction of flow counter equation system to realize the above
idea, and then clearly define the detection boundary of FOCES,
i.e., under what condition can FOCES successfully detect
forwarding anomalies.

B. Flow Counter Equation System

We show how to express the constraints for all rules in the
network as a linear equation system. For now, we assume an
ideal setting where there are no packet losses, and counters of
all rules are perfectly synchronized. Later in the next section,
we will show how to make it work in realistic setting.

First, assume there are n flows f1, f2, ..., fn, and m rules
r1, r2, ..., rm in the network, where m > n. Define the Flow-
Counter Matrix (FCM) Hm×n as:

Hi,j =

{
1 if flow fj matches rule ri

0 otherwise
(1)

Then, define the counter vector as Y = (y1, y2, ..., ym)T ,
where yi is the counter value of rule ri, and the volume vector
as X = (x1, x2, ..., xn)

T , where xi is the volume of flow fi.
When there is no forwarding anomaly, X and Y should satisfy
what we term as the flow-counter equation system:

HX = Y (2)

Let the volume vector be X0, then the counter vector should
be Y0 = HX0. Suppose due to attacks the FCM is changed
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to H
′ ̸= H . Then, the observed counter vector will become

Y
′
= H

′
X0 ̸= Y0, Since the controller has no idea what H

′

is, when it tries to recover X0, it needs to solve the flowing
flow-counter equation system:

HX = Y
′

(3)

Since m > n, Eq. (3) is an overdetermined equation system.
Also, since Y

′
= H

′
X0, with H

′ ̸= H , it is very possible that
the overdetermined equation system is inconsistent, meaning
that there is no exact solution. Then, the least-square estimate
for X0 will be:

X̂ = (HTH)−1HTY
′

(4)

With this estimate, the resultant counter vector will be Ŷ =
HX̂ . Define the error vector ∆ as the absolute difference
between Ŷ and Y

′
:

∆ = |Y
′
− Ŷ | (5)

Then, if we know that ∆ ̸= 0, we can definitely conclude that
there is a forwarding anomaly in the network.

To make the idea more concrete, consider the example
shown in Fig. 2, where the original and actual FCM are:

H =


1 0 0
1 0 0
1 1 0
0 0 0
0 0 1
1 1 1

 , H
′
=


1 0 0
1 0 0
0 1 0
1 0 0
1 0 1
1 1 1

 (6)

Let the volume vector of these three flows be X0 =
(a, b, c)T = (3, 4, 5)T , then it is easy to calculate Y

′
, X̂ , Ŷ ,

and ∆ as:

Y
′
=


3
3
4
3
8
12

 , X̂ =

31
8

 , Ŷ =


3
3
4
0
8
12

 , ∆ =


0
0
0
3
0
0

 (7)

Since ∆ ̸= 0, we flag the network under forwarding anomaly.
FCM Generation. To realize FOCES, we need a way to
efficiently establish the relationship between flows and rules,
i.e., FCM. Since there are a large number of “physical flows”,
defined by say TCP five-tuple, we cannot directly use them
due to scalability issues. Here, we choose to use the notion
of “logical flows” or equivalence classes. A logical flow is
defined as a class of packets that experience the same set of
rules in the network.

Specifically, we adopt the approach in ATPG [20] to gen-
erate the all-reachability table. First, we create a symbolic
header with all bits set to wildcards, and inject it to each
terminal port of the network. For each terminal port, we
match the symbolic header against each rule in the flow
table of the switch possessing that port, and create a new
symbolic header. The new symbolic header is constrained by
the matching fields of the rule, and the actions of the rule are

S0 S5

S2

S4S3

S1

b

a

c

r0               a

r1               a

r2             a+b 

r3               0

r4               c

r5           a+b+c                            

Rule       Counter

    a

    a

    b 

  a+c

  a+c

a+b+c                           

Counter Constraints

observed 
counters

Fig. 3. A counterexample where FOCES misses the forwarding anomaly.

taken on the header. For example, if a rule has a matching
field dst ip = 10.0.0.1/24 and an action “Output Port 2”,
then the dst ip of the header will be set to 10.0.0.1/24, and
the new header will be forwarded to the switch connected to
Port 2. As each header h traverses the network, the set of
rules matching the header are recorded in h.history. When
it reaches a terminal port, a flow is created, and a column
is added to the FCM. The column has 1 at each row whose
corresponding rule appears in h.history, and 0 at all other
rows.

C. The Condition for Successful Detection

In what follows, we will first give a counterexample, where
a forwarding anomaly does not violate counter constraints.
Then, we theoretically analyze the condition under which
FOCES can detect forwarding anomalies. With this condition,
we can decide whether a forwarding anomaly in a network can
be detected. It may also help us carefully design rules such
that FOCES can always detect forwarding anomalies, which
is left as one of our future work.

Counterexample for FOCES. Fig. 3 shows an example,
which is much the same with that in Fig. 2, except that the
flow of volume c now passes switch S3 before reaching S4

and S5. Still, we let the volume vector for these flows be
X0 = (a, b, c)T = (3, 4, 5)T . Then, the original FCM H , the
actual FCM H

′
, and the observed counter vector Y

′
are:

H =


1 0 0
1 0 0
1 1 0
0 0 1
0 0 1
1 1 1

 , H
′
=


1 0 0
1 0 0
0 1 0
1 0 1
1 0 1
1 1 1

 , Y
′
=


3
3
4
8
8
12

 (8)

According to FOCES, the estimate of volume vector is X̂ =
(3, 1, 8)T , which is an exact solution to HX = Y

′
, i.e., a

solution with ∆ = 0. The reason for this is that HX = Y
′

is a
consistent equation system. Thus, the condition for successful
detection is equivalent to the condition for the equation system
to be inconsistent. In the following, we will analyze such
condition from linear algebraic point of view.

Analysis on Detectability. For sake of analysis, we consider a
specific network with m forwarding rules r1, r2, . . . , rm, and n
flows f1, f2, . . . , fn. Let the FCM of the network be Hm×n,
which can be represented as a row vector (h1, h2, . . . , hn).
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Since each column hi corresponds to flow fi, in the following
we will also use hi to refer to flow fi. Let the volume vector
be X0 = (x1, x2, . . . , xn)

T , i.e., flow fi has volume xi. In the
following, we define what is a forwarding anomaly and when
it is detectable.

Definition 1. Consider a network and let H be its FCM. If
a flow hi ∈ H with nonzero volume is modified to h

′

i ̸= hi,
we say hi is experiencing a forwarding anomaly, denoted as
FA(hi, h

′

i).

Note that the above definition captures the two avenues of
causing forwarding anomalies (i.e., modifying output ports of
rules, and directly forwarding packets without matching rules)
that we have specified in Section II-B. The reason is that both
avenues will make the forwarding path of a flow h change to
a different one, and thus the rules matched by the modified
flow h

′
will be different from the those of h.

Definition 2. We say a forwarding anomaly FA(hi, h
′

i) is
detectable if and only if its flow-counter equation system
of Eq. (3) is inconsistent, Otherwise, we say FA(hi, h

′

i) is
undetectable.

Theorem 1. A forwarding anomaly FA(hi, h
′

i) is unde-
tectable if and only if h

′

i lies in the linear subspace generated
by h1, h2, . . . , hn.

Proof: Please refer to our technical report [21].
Even Theorem 1 gives the necessary and sufficient condition

to determine whether a forwarding anomaly is detectable, it is
difficult to apply it to real networks. In the following, we will
reduce the above condition to the problem of finding loops in
a bipartite graph, which is much easier and intuitive to apply.

Definition 3. The Rule Bipartite Graph (RBG) of a switch
S with respect to FCM H , denoted as GH

S (Vin, Vout, E), is
constructed as follows. Vout consists of rules r in switch S. If
there is a flow h ∈ H matching a rule ri and a rule rj ∈ Vout

in sequence, denoted by ri
h−→ rj , then we add ri into Vin and

(ri, rj) into E. For sake of later proof, we also add a virtual
rule rs acting as the first rule of all flows. Formally, we have:

Vin , {ri| ∃rj ∈ Vout, ∃h ∈ H, ri
h−→ rj} (9)

Theorem 2. A forwarding anomaly FA(hi, h
′

i) is unde-
tectable if and only if there is a switch S whose RBG with
respect to FCM H̃ , H ∪ {h′}, , i.e., GH̃

S (Vin, Vout, E),
contains a loop.

Proof: Please refer to our technical report [21].

To explain what Theorem 2 means, we return to the example
in Fig. 3. The RBG of S2 is shown in Fig. 4. We can see
that there is a loop marked in green dashed lines. The labels
besides the edges are the volumes of flows. By applying the
operations marked besides the dashed lines, we can obtain a
new flow distribution shown inside the red dashed rectangles.
Under this new distribution, the counter values of all rules can
be achieved. That is, the distribution can be seen as another
“explanation” for the observed counter values. Under this new
explanation, we can redirect the flow of volume a from r1 →
r2 to r1 → r3, without breaking the constraints specified by
the flow counter equation system.

IV. FOCES: MAKE IT WORK

The last section shows how FOCES can detect forwarding
anomalies in ideal settings. To make FOCES to work in
realistic settings, we are still faced with two challenges: (1)
Noises. In realistic settings, both packet losses and out-of-
sync counters can result in ∆ ̸= 0. We need to eliminate the
impact of such noises. (2) Scalability. Computing ∆ requires
calculating the inverse of FCM, which is expensive when there
are a large number of rules and flows. In the following, we
show how we resolve the above two challenges.

A. Threshold-based Detection Algorithm

In the following, we first define the anomaly index to
measure the possibility of forwarding anomaly. If the anomaly
index is higher than a threshold T , then we say there are for-
warding anomalies. Then, we discuss how to set the threshold
properly so as to minimize false positives.
Anomaly index. The design of anomaly index is based on the
“majority good” assumption, i.e., most of the flows are for-
warded correctly except a small fraction of flows. Specifically,
let ∆ be the error vector calculated using Eq. (5). Then, the
anomaly index AI is defined as Errmax

Errmed
, where Errmax and

Errmed are the maximum and median of all elements in ∆,
respectively. Due to the “majority good” assumption, Errmed

should be always small, while Errmax can be large when there
are forwarding anomalies. For the example shown in Fig. 2,
Errmax = 3, Errmed = 0, and AI = +∞. Thus, FOCES
judges that there are forwarding anomalies since AI > T ,
where T is a threshold value determined as follows.
Detection threshold. Here, we assume each element Y

′
(i)

is conforming to the normal distribution N(Y0(i), σ
2), where

Y0(i) is the mean and σ is the standard variance. Therefore,
each element of ∆ follows a folded normal distribution, whose
cumulative distribution function is F (x) = erf(x/

√
2σ2),

where erf() is the error function [22]. By solving F (x) =
1/2, we have x =

√
2erf−1(1/2)σ ≈ 0.675σ. Thus, we

use 0.675σ as an approximate for Errmed. According to the
three-sigma rule in statistics [23], Errmax should be less
than 3σ with probability 0.997. Thus, Errmax

Errmed
should be less

than 3σ
0.675σ ≈ 4.4 with high probability. Thus, we choose

T = 4.5 as the default detection threshold. We will show this
threshold achieves a good detection accuracy with experiments
(see Section VI-D).
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Algorithm 1 summarizes the threshold-based detection al-
gorithm of FOCES.

Algorithm 1: Detect_Anomaly_Baseline(Y
′
,Hm×n, T )

Input: Y
′
= (y1, y2, ..., ym)T : the counter vector, Hm×n: the

Flow-Counter Matrix (FCM), T : the detection threshold.
Output: True (Anomaly) or False (Normal).

1 Compute the volume vector estimate X̂ ← (HTH)−1HTY
′
;

2 Compute the counter vector estimate Ŷ ← HX̂;
3 Compute the error vector ∆← |Y

′
− Ŷ |;

4 Errmax ← maximum of ∆;
5 Errmed ← median of ∆;
6 AI ← Errmax

Errmed
;

7 if AI > T then
8 return True;
9 else

10 return False;
11 end

B. Making FOCES Scalable with Matrix Slicing

In the following, we show how to make FOCES scalable
by reducing the computation time. Our method is inspired
by the Rule Bipartite Graph (RBG) introduced in Section III.
We observe that the RBG for a specific switch only contains
rules of that switch and their predecessor rules. We can extract
the sub-FCM corresponding to the RBG, one for each switch.
Since sub-FCMs are much smaller than the original FCM, we
can expect to reduce the computation time by applying the
threshold-based algorithm for each sub-FCM individually.
FCM Slicing. For a specific switch Si, let its RGB be
GSi

(Vin, Vout, E). First, we extract the rules R(Si) for Si as
{(Vin∪Vout)\rs}. Note the virtual flow rule rs is not included.
Then, we identify the flows F (Si) for Si as those that match
at least one flow rule in R(Si). H(Si) is the sub-matrix of
H with only those rows and columns corresponding to R(Si)
and F (Si), respectively.

Here, we present an example to show how to slice the
original FCM into sub-FCMs. For switch S2 in Fig 2, Fig 5
shows its RBG GS2(Vin, Vout, E). The rules in R(S2) are
marked with dashed rectangles, and the flows in F (S2) are
just all flows in the network. The sub-FCM H(S2) is a 4× 3
sub-matrix of the original FCM H . Since this small topology
contains only 6 rules and 3 flows, the effect of slicing is not
that remarkable. In real networks with many rules and flows,
the sub-FCMs can be much smaller compared with the original
FCM.

Algorithm 2 summarizes the detection process of FOCES
with slicing.

Algorithm 2: Detect_Anomaly_Slicing(Y
′
,Hm×n, T, n)

Input: Y
′
= (y1, y2, ..., ym)T : the counter vector, Hm×n: the

Flow-Counter Matrix (FCM), T : the detection threshold,
n: the number of switches.

Output: True (Anomaly) or False (Normal).
1 foreach i← 1 to n do
2 Computer the sub-FCM H(i) for switch Si;
3 Extract the sub-vector Y

′
(i) for switch Si from Y

′
;

4 Compute the volume vector estimate
X̂ ← (H(i)TH(i))−1HTY

′
(i);

5 Compute the counter vector estimate Ŷ (i)← H(i)X̂;
6 Compute the error vector ∆(i)← |Y

′
(i)− Ŷ (i)|;

7 Errmax ← maximum of ∆(i);
8 Errmed ← median of ∆(i);
9 AI ← Errmax

Errmed
;

10 if AI > T then
11 return True;
12 end
13 end
14 return False;

Analysis on Detection Equivalence. The following theorem
says that FOCES with slicing is equivalent to the baseline
threshold-based algorithm in detecting forwarding anomalies.
Theorem 3. If a forwarding anomaly FA(hi, h

′

i) is detectable
(without slicing), then it is still detectable when using slicing.

Proof: Please refer to our technical report [21].
We will use experiments to further validate such equivalence

in Section VI-F.
Analysis on Computation Complexity Reduction. In the
following, we analyze the computation complexity of FOCES
with and without slicing, respectively. Since the computation
complexity depends on network topology and configuration,
here we pick Fattree as a representative to illustrate the
analysis process.

In the Fattree (k = n) topology, the time complexity of
FOCES without slicing approximately equals to that of matrix
inversion O(N3), where N is the size of the FCM, i.e., the
number of flows in the network. Since the Fattree (k = n)
has n3

4 hosts, the number of flows will be N = O(n6).
The number of switches is O(n2). The average number of
flows passing a specific switch is O(n

6

n2 ) = O(n4), and the
time to apply FOCES on one switch is O(n4)3 = O(n12).
Thus, the computation complexity of FOCES with slicing is
O(n12)×O(n2) = O(n14) ≈ O(N2.3), that is, we reduce the
computation complexity from O(N3) to O(N2.3), by using
slicing. We will use experiments to further demonstrate the re-
duction of computation time by using slicing in Section VI-F.

Finally, note that slicing can also help FOCES to pinpoint
the malicious switches: if the anomaly index for one switch
is high, then it is possible that this switch on its last hop
is responsible for the forwarding anomalies. We leave the
localization of malicious switches as one of our future work.
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V. SECURITY ANALYSIS

This section analyzes the security of FOCES. We discuss
how FOCES detects packet early drops and path deviation
defined in Section II. Suppose a packet p should be forwarded
along a path S1 → S2, . . . ,→ Sn, and let ri be the rule
matched by p at switch Si. Consider the following anomalies.
Path Deviation. Here, we only consider the following two
special cases, and the cases of general path deviation are
largely the same.

• Switch Bypass. Suppose Si is compromised and forwards
p directly to switch Si+2, bypassing the intended next
hop Si+1. Although the counters of ri and ri+2 can be
made consistent, the counters of ri+1 will be less than
expected, resulting in inconsistency. Such inconsistency
can be detected by FOCES when the condition given in
Theorem 2 is met.

• Path Detour. Suppose Si is compromised and forwards p
along a path Si → D1 → D2, . . . ,→ Dm → Si → Si+1.
Although the counters of ri and ri+1 can be made
consistent (recall that the adversary has full control over
Si), the counters of D1 through Dm will be higher than
its expected value, resulting in inconsistency. Such incon-
sistency can be detected by FOCES when the condition
given in Theorem 2 is met.

Early Drop. Suppose Si is compromised and drops p instead
of sending it to its next hop Si+1. As a result, the counter of
ri+1 should be less than its expected value, thereby breaking
the consistency between the counters of ri and ri+1. Such
inconsistency can be detected by FOCES when the condition
given in Theorem 2 is met.

VI. IMPLEMENTATION AND EVALUATION

This section presents the implementation of FOCES, and
evaluates it with Mininet-based experiments. We are interested
in answering the following questions:

1) Can FOCES effectively detect forwarding anomalies?
2) How accurately can FOCES detect forwarding anoma-

lies, under different packet loss rates, with different
number of rules being modified, for different network
topologies?

3) Whether slicing can help FOCES achieve a faster de-
tection without loss of accuracy?

A. Implementation

Fig. 6 shows the system architecture of FOCES, which
mainly contains four parts: (1) the FCM Generator retrieves
flow rules from the controller, calculates all flows in the
network (a flow is a set of packets that match the same set
of flow rules), and constructs the FCM according to Eq. (1);
(2) the Statistics Collector periodically queries switches for
flow statistics, and extracts the counters of rules to construct
the counter vector; (3) the Equation System Solver solves the
equation system determined by the FCM and counter vector, to
obtain an estimate of the flow volume vector, and calculates the
error vector of that estimate; (4) the Threshold-based Detector

Equation System Solver

Statistics Collector 

FCM counter vect.

FCM Generator

Threshold-based Detector 

error vect.

From controller From switches

flow rules flow stat

Fig. 6. The system architecture of FOCES.

makes the decision on whether there are forwarding anomalies,
by computing the forwarding anomaly index from the error
vector, and comparing the index with the threshold.

We prototype FOCES with approximately 1500 lines of
Python codes. The implementation details are as follows. The
Flow Counter Matrix (FCM) Generator periodically retrieves
flow tables of switches via the Floodlight REST API. Then,
it constructs the FCM according to Section III-B, based on
ATPG [20]. The FCM is stored as a sparse matrix using the
Python sparse library. The Statistics Collector periodically
collects flow statistics by querying the controller, also via the
Floodlight REST API. Then, it extracts the counter values to
construct the counter vector. The Equation System Solver takes
the FCM and counter vector as input, and computes a least
square solution to Eq. (4). We use the NumPy library in Python
to compute matrix inversion and transpose.

B. Experiment Setup

We use Floodlight v2.1 [24] as the controller, and use
Mininet [25] to generate different network topologies, consist-
ing of Open vSwitches [26]. Floodlight and Mininet are run
on the same Linux desktop with 3.5GHz Intel Core i3 CPU
and 16GB memory. We use four different network topologies
including: the Stanford backbone network (Stanford) [27],
FatTree(4), BCube(1,4), and DCell(1,4). For Stanford, we
attach one host for each switch, while for the other three
topologies, we attach one host for each edge switch. The
parameters of these topologies are summarized in Table I. For
each network, we generate a flow of the same rate between
each pair of host by using iperf. Since we fix the total flow
rate of each network to 800Mbps, the flow rate is 2Mbps
for Stanford, 4Mbps for FatTree and BCube, and 2.5Mbps
for DCell. For each flow, the Floodlight controller computes
flow rules using shortest-path routing, and populates them
to switches. To simulate forwarding anomalies, we randomly
choose switches from the network, and randomly modify flow
rules in the switches’ flow tables.

C. Experiment 1: Functional Test

In this experiment, we test whether FOCES can detect
forwarding anomalies. We use BCube(1,4) under packet loss
rates 0%, 5%, and 10%. After 60 seconds, we randomly

7



TABLE I
The parameters of four network topologies used in our experiments.

# switches # hosts # flows # rules

Stanford 26 26 650 1300
FatTree(4) 20 16 240 556
BCube(1,4) 24 16 240 597
DCell(1,4) 25 20 380 859

Time (s)
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Fig. 7. The anomaly indices with and without forwarding anomalies,
respectively. BCube(1,4) is used for the experiment.

modify one rule in the network to create forwarding anomalies,
and repair the modified rule after another 60 seconds. The
experiment runs for 180 seconds in total. FOCES runs a
detection process every 5 seconds, with the detection threshold
set to 4.5.

Fig. 7 shows the anomaly index of each detection. We can
see the index quickly goes beyond the threshold, when the
forwarding anomalies happen, and returns to low values when
the forwarding anomalies end. We also see that when the
packet loss rate increases, the indices for normal and anomaly
cases become less distinguishable.

D. Experiment 2: Detection Accuracy vs. Detection Threshold

In this experiment, we evaluate the detection accuracy of
FOCES, and how it is affected by the detection threshold. We
use the receiver operating characteristic (ROC) curve, which
plots the True Positive (TP) rate against the False Positive
(FP) rate. In the experiment, for each network topology,
we randomly modify one flow rule, and vary the detection
threshold from 1 to 100. The detection threshold is still set to
4.5.

Fig. 8 reports ROC curves for different packet loss rates
from 0% to 25%. The dotted lines from the left-bottom to
right-top are reference curves representing “random guess”,
and the larger area under the ROC curve, the more accurate the
detection method is. We can see that the accuracy of FOCES
is little affected when the packet loss rate is below 10%, for
all four networks. Especially for DCell with packet loss rate
10%, FOCES achieves a TP rate nearly 100% and a FP rate
around 4.3%, when the threshold is set to 4.5.

The accuracy of FOCES drops when packet loss rate is
larger than 10%. The reason is that packet losses can violate
the constraints of counters, leading to more false positives.
Despite the degradation, FOCES is still a useful indicator of
forwarding anomaly (compared with “random guess”), even
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Bcube Dcell FatTree(4) Stanford

D
et

ec
tio

n 
A

cc
ur

ac
y

0.2

0.4

0.6

0.8

1

Baseline
Slicing

Fig. 10. The detection accuracy of FOCES with and without slicing, when
the optimal threshold value is set.

for packet loss rate as high as 25%. The above results show
that FOCES has high detection accuracy for moderate packet
loss rates.

E. Experiment 3: Detection Precision vs. Number of Anoma-
lies

In this experiment, we evaluate how precise is the detection
result of FOCES, and how the precision is affected when there
are different number of forwarding anomalies. To quantify
precision, we use TP

TP+FP , which indicates what percentage of
samples that are marked as forwarding anomalies are actually
such. In the experiment, we fix the detection threshold to
T = 3.5, and vary the packet loss rates. For each packet loss
rate, we randomly modify 1, 2, and 3 rules.

Fig. 9 reports the relationship between the precision of
FOCES and the packet loss rate, for different number of
modified flow rules. Here each data point is an average of
50 experiment runs. We can see that for a fixed packet
loss rate, the precision improves as more rules are modified
(thereby causing more forwarding anomalies). Thus, FOCES
can identify anomalies more precisely, when more flows are
deviating from their expected paths.

F. Experiment 4: The Effectiveness of Slicing

In this experiment, we study whether slicing can help
FOCES to reduce the computation time while maintaining high
detection accuracy.

Detection Accuracy. Fig. 10 reports the detection accuracy of
FOCES with and without slicing, when the optimal threshold
value is set. The accuracy is calculated as TP+TN

N+P , where
N and P are the total number of negatives and positives,
respectively. Surprisingly, we find that with slicing, FOCES
can achieve an even better detection accuracy, except for the
BCube(1,4) topology. This is probably because dealing with
each switch can prevent noises of benign forwarding behav-
iors from smoothing out the high anomaly index caused by
forwarding anomalies. We further study the optimal threshold
for FOCES using and without using slicing. Specifically, we
vary the threshold from 0 to 100, and report the detection
accuracy in Fig. 11. We can see that FOCES with slicing
prefers a larger threshold compared with that of not using
slicing. This is perhaps due to the fact that slicing can help
FOCES eliminate noises.
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Fig. 8. The ROC curves for four different topologies.
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Fig. 9. The detection precision for four different topologies.
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Fig. 11. The relationship between detection accuracy and threshold value for FOCES with and without slicing.
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Fig. 12. The detection time for different number of flows.

Computation Time. We continue to evaluate how slicing
helps FOCES to reduce the computation time. We use the
FatTree(8) topology, and set up different number of flows.
As can be seen from Fig. 12, the computation time of the
baseline FOCES (without slicing) is around 40 seconds when
there are no more than 5K flows, but it increases rapidly to
more than 5K seconds when there are around 12K flows.
In contrast, the computation time of FOCES with slicing is
roughly the same when there are less than 5K flows. However,
the computation time grows much slower than the baseline
FOCES. Specifically, when there are around 12K flows, the
computation time of FOCES with slicing is less than 20% of

that of the baseline FOCES. This means that we can effectively
reduce the computation overhead of FOCES by slicing.

VII. RELATED WORK

Many tools have been proposed to detect the forwarding
anomalies and localize the malicious switches in SDN. We
broadly classify them into two categories: path verification
tools and statistics verification tools.

Path verification tools try to detect forwarding anomalies
by verifying whether the forwarding path took by packets are
corresponding to the paths calculated by the controller. Path
verification for the Internet has been extensively studied [28]–
[30]. The basic idea is to let each router along the forwarding
path embeds a Message Authentication Code (MAC) for each
packet, such that destination switch can check whether a pack-
et has followed the path claimed by the sender. SDNsec [11],
REV [12], and WedgeTail [13] apply path verification in the
new context of SDN.

In SDNsec [11], the controller pre-computes the path for
each flow to be examined, and generates a forwarding entry
for each switch along the path. Then, the controller instructs
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the ingress switch to embed these entries into packets, and
each switches along the path forward packets according to
the embedded forwarding entries. In addition, each switch
also embeds a Message Authentication Code (MAC) into each
packet to proof that it forwards the packet. Then, by letting
egress switches report the packets, the controller can check
whether the real forwarding path of these packets is consistent
with the expected one. One serious problem with SDNsec is
that the overhead: to ensure every packet has followed the
correct path, the egress switch needs to report all packets of
the flow to the controller, which will incur high overhead on
the control channel.

REV [12] reduces the overhead by proposing the compres-
sive MAC, which allows switches to compress MACs before
reporting to the controller. Using compressive MAC, the egress
switch of a flow only needs to report a single flow packet to
the controller. The authors prove that once the flow packet
passes the verification, it holds with high probability that each
packet of the flow has traversed the intended path.

WedgeTail [13] uses a similar approach, where the con-
troller compares the expected and actual trajectories of packets
to detect forwarding anomalies. Different from SDNSec and
REV which checks a specific flow, WedgeTail aims to detect
malicious forwarding node. To do so, it tries to identify the
most frequently traversed nodes in the network, and analyzes
the trajectories of packets that originating from ports of these
devices. If the actual trajectories differ from the real trajecto-
ries, then it identifies the first switch where these trajectories
diverge as the malicious switch.

One common drawback of the above path verification tools
is that extra packet header space should be reversed to carry
forwarding paths or cryptographic information, and switches
should be modified to embed tags into packets, which can
seriously limit their deployment in real networks.

Statistics verification tools try to detect forwarding anoma-
lies by collecting and analyzing flow statistics. Compared with
path verification tools, they do not need to add extra packet
headers, or modify switch processing logics. The key idea is
to leverage the flow conservation principles, i.e., if all packets
of a flow are forwarded along the expected path, the counters
for this flow should be roughly the same [17], [18].

Chao et al. [14] try to detect malicious switches by checking
consistency of flow statistics. Specifically, to monitor a rule r
at a switch S, the controller installs dedicated counter rules
(rules used solely for counting, without affecting forwarding
behaviors) at each neighboring switch of S. These rules
have the same matching fields with r, and count the number
of packets flow in or out of switch S. Rule r passes the
verification if the difference of these two numbers is below
a threshold. Since monitoring each rule requires one or two
counter rule for each neighboring switch, it may exhaust
TCAM memory of switches if we need to check all the rules
in the network. In addition, it requires cascaded flow tables,
which are still not well supported by many SDN switches.

Based on a similar idea, FADE [15] generates and installs
dedicated flow rules at switches to collect flow counters, and

check the consistency among counters of the same flow. To
minimize the cost of dedicated flow rules, FADE introduces
the concept of rule paths, and designs algorithms to select the
minimum number of flows to cover all rule paths. Similarly,
FADE has large overhead as it needs more than two dedicated
rules per flow for collecting statistics.

FlowMon [16] collects and analyzes port statistics to detect
packet droppers and packet swappers in SDN, also leveraging
the flow conversation principle. Different from [14] and [15],
FlowMon does not require dedicated flows. However, it has a
smaller detection scope as it only checks the per-port statistics,
rather than per-flow statistics. This means that FlowMon
may miss some carefully-crafted forwarding anomalies that
preserve the conservation of per-port statistics.

Different from all the above statistics verification tools that
detect forwarding anomalies on a per-flow or per-switch basis,
FOCES can detect on a network-wide scale, since it analyzes
the flow counter equation system, which characterizes the
network-wide forwarding behaviors. In addition, FOCES does
not require dedicated counter rules, thus has no overhead on
switch flow table space.

VIII. CONCLUSION

This paper presented FOCES, which can detect forwarding
anomalies in Software Defined Networks (SDNs). FOCES
captures the correct forwarding behaviors as a linear equation
system, i.e., flow counter equation system, and tries to detect
forwarding anomalies by analyzing whether the counters of
rules in the network can fit into this equation system. Different
from existing statistics verification tools that look at individual
flows, FOCES can detect forwarding anomalies at a network
wide, and does not need to install any dedicated rules. We
theoretically analyzed the condition for FOCES to successfully
detect forwarding anomalies, and used experiments to show
FOCES can achieve a high detection accuracy with small false
positive rates. To make FOCES scale to large networks, we
proposed a slicing-based method to reduce the computation
cost. We showed the slicing-based method can reduce the
computation overhead by 80% when there are 12K flows.

Our future work includes: (1) designing algorithms to
localize the compromised switches that cause forwarding
anomalies; (2) studying how to install rules which meet
the detection conditions of FOCES, such that all possible
forwarding anomalies can be detected.
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